Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:01:55.331Z Has data issue: false hasContentIssue false

Ostwald Ripening of {113} Defects Precursors and Transient Enhanced Diffusion

Published online by Cambridge University Press:  10 February 2011

Giovanni Manninoo
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Nicholas E.B. Cowem
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Peter A. Stolk
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Fred Roozeboom
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Hendrik G.A. Huizing
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Jurgen G.M. van Berkum
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Wiebe B. de Boer
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Filadelfo Cristiano
Affiliation:
CEMES/CNRS, Toulouse, France
Alain Claverie
Affiliation:
CEMES/CNRS, Toulouse, France
Martin Jaraiz
Affiliation:
Dept. de Electricidad. y Electronica, University of Valladolid, Spain
Get access

Abstract

The ripening of ion-beam generated point defects into extended defects has been investigated in detail. The interstitial supersaturation has been extracted from boron marker-layer diffusion after annealing under non-equilibrium defect conditions. We measured a very high initial supersaturation followed by a decrease over many orders of magnitude with a characteristic “plateau” related to the presence of {113} defects. A continuum inverse model has been used to properly describe the ripening of point defects into clusters and their evolution in the presence of a remote sink, e.g. the surface. It evidences that a nonconservative Ostwald ripening process takes place inside the defect band during the annealing and sustains the interstitial supersaturation. The model reveals moreover an oscillatory behaviour of dissociation energies of the nanometer-sized defects which are responsible for the initial high supersaturation. These defects are believed to be {113} precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S. and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
2. Huizing, H.G.A., Visser, C.C.G., Cowern, N.E.B., Stolk, P.A. and Kruif, R.C.M. de, Appl. Phys. Lett. 69, 1211 (1996).Google Scholar
3. Zhang, L.H., Jones, K.S., Chi, P.H. and Simons, D.S., Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
4. Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J. and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
5. Chao, H.S., Griffin, P.B., Plummer, J.D. and Rafferty, C.S., Appl. Phys. Lett. 69, 2113 (1996).Google Scholar
6. Arai, N., Takeda, S. and Kohyama, M., Phys. Rev. Lett. 78, 4265 (1997).Google Scholar
7. Lee, Y.H., Appl. Phys. Lett. 73, 1119 (1998).Google Scholar
8. Benton, J.L., Halliburton, K., Libertino, S., Eaglsham, D.J. and Coffa, S., J. Appl. Phys. 84, 4749 (1998).Google Scholar
9. Dilhac, J.-M., in Advances in Rapid Thermal and Integrated Processing, edited by Roozeboom, F. (Kluwer Academic Publishers, 1996) p. 143.Google Scholar
10. Fair, R.B., in Impurity Doping Processes in Silicon. ed. by Wang, F.F.Y. (North-Holland, 1981) p.315.Google Scholar
11. Cowern, N.E.B., Walle, G.F.A. van de, Zalm, P.C. and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
12. Cowern, N.E.B., Walle, G.F.A. van de, Gravensteijn, D.J. and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991).Google Scholar
13. Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G H., Eaglesham, D.J., Gossmann, H.-J. and Poate, J.M. in Silicon Front-End Technology - Materials Processing and Modeling, edited by Cowern, N., Jacobson, D.C., Griffin, P.B., Packan, P. and Webb, R.P., (Mat. Res. Soc. Symp. Proc. 532, Pittsburgh, PA, 1998) pp 4353.Google Scholar
14. Cuendet, N., Halicioglu, T. and Tiller, W.A.. Appl. Phys. Lett. 68, 19 (1996).Google Scholar
15. Solmi, S., Baruffaldi, F. and Canteri, R., J. Appl. Phys. 69, 2135 (1991)Google Scholar