Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T04:55:31.118Z Has data issue: false hasContentIssue false

Optical Properties of Colloidal CdSe/ZnS core/shell Nanocrystals Embedded in a UV Curable Resin

Published online by Cambridge University Press:  01 February 2011

Abhishek Joshi
Affiliation:
[email protected], University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR 72701, United States
Edwin Davis
Affiliation:
[email protected], Norfolk State University, Department of Optical Engineering, 700 Par Ave., Norfolk, VA, 23504, United States
Kaushik Narsingi
Affiliation:
[email protected], University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
Omar Manasreh
Affiliation:
[email protected], University of Arkansas, Department of Electrical Engineering, 3217 Bell Engineering Center, Fayetteville, AR, 72701, United States
B. D. Weaver
Affiliation:
[email protected], Code 6818, Naval Research Laboratory, 4555 Overlook Avenue, SW Washington, DC, 20375, United States
Get access

Abstract

Optical absorption and photoluminescence techniques were used to investigate the band gap of colloidal CdSe/ZnS core/shell nanocrystals matrixed in a UV curable resin. The band gap was measured for several nanocrystals with size ranging between 1.9 and 4.0 nm. The band gap (Eg) was determined from the first exciton peaks observed in the optical absorption spectra. Both Debye and Einstein temperatures were estimated from fitting the energy band gap vs. temperature using two different empirical expressions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watt, Eichmann, T., Rubinsztein-Dunlop, H., and Meredith, P., Appl. Phys. Lett. 87, 53109 (2005).Google Scholar
2. Bär, M., Lehmann, S., Rusu, M., Grimm, A., Kötschau, I., Lauermann, I., Pistor, P., Sokoll, S., Schedel-Niedrig, Th., Lux-Steiner, M. Ch., Fischerb, Ch.-H., Weinhardt, L., Heske, C., and Jung, Ch., Appl. Phys. Lett. 86, 222107 (2005).Google Scholar
3. Shen, Qing and Toyoda, Taro, Jpn. J. Appl. Phys., Part 1 43, 2946 (2004).Google Scholar
4. Zhao, J., Zhang, J., Jiang, C., Bohnenberger, J., Basché, T., and Mews, A., J. Appl. Phys. 96, 3206 (2004).Google Scholar
5. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A., Science 302, 442 (2003).Google Scholar
6. Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H. E., Jares-Erijman, E. A., and Jovin, T. M., T. M. Nature Biotechnol. 22, 198 (2004).Google Scholar
7. Schulze, E., Ferrucci, J. T., Poss, K., Lapointe, L., Bogdanova, A., Weissleder, R., Invest. Radiol. 30, 604 (1995).Google Scholar
8. Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., J. Phys. D 36, R167 (2003).Google Scholar
9. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature (London) 370, 354 (1994).Google Scholar
10. Schlamp, M. C., Peng, X., and Alivisatos, A. P., J. Appl. Phys. 82, 5837 (1997).Google Scholar
11. Gao, M., Richter, B., Kirstein, S., and Möhwald, H., J. Phys. Chem. B 102, 4096 (1998).Google Scholar
12. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, 1316 (1995).Google Scholar
13. Lee, J., Mathai, M., Jain, F., and Papadimitrakopoulos, F., J. Nanosci. Nanotechnol. 1, 59 (2001).Google Scholar
14. Tessler, N., Medvedev, V., Kazes, M., Kan, S., and Banin, U., Science 295, 1506 (2002).Google Scholar
15. Brus, L. E., Appl. Phys. A 1991, 53, 465.Google Scholar
16. Alivisatos, A. P., J. Phys. Chem. 1996, 100, 13226.Google Scholar
17. Weller, H., Adv. Mater. 1993, 5, 88.Google Scholar
18. Bawendi, M. G.; Steigerwald, M. L.; Brus, L.E., Annual. Rev. Phys. Chem. 1990, 41, 477.Google Scholar
19. Dabbousi, B. O., J. Phys. Chem. B 1997, 101, 94639475.Google Scholar
20. See http://www.evidenttech.comGoogle Scholar
21.Semiconductor heterojunctions and nanostructures,” Manasreh, M. O. (McGraw-Hill, New York, 2005), Chapter 6, pp.191.Google Scholar
22. Varshni, Y.P., Physica 34, 149 (1967).Google Scholar
23. Cody, G. D., in Hydrogenated Amorphous Silicon, edited by Pankove, J. I., Semiconductors and Sentimentals Vol. 21, Pt. b (Academic, New York, 1984)Google Scholar