Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T07:33:47.074Z Has data issue: false hasContentIssue false

Optical properties and Limits of a Large-Area Periodic Nanophotonic Light Trapping Design for Polycrystalline Silicon Thin Film Solar Cells

Published online by Cambridge University Press:  18 January 2013

Daniel Lockau
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin. Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195 Berlin.
Tobias Sontheimer
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin.
Veit Preidel
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin.
Christiane Becker
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin.
Florian Ruske
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin.
Frank Schmidt
Affiliation:
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195 Berlin.
Bernd Rech
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin.
Get access

Abstract

Rigorous finite element optical simulations have been used to examine the absorption of light in various crystalline silicon based, nanostructured solar cell architectures. The compared structures can all be produced on glass substrates using a periodically structured dielectric coating and a combination of electron-beam evaporation of silicon and subsequent solid phase crystallization. A required post-treatment by selective etching of non-compact silicon regions results in an absorber material loss. We show that by adequately tailoring the optical design around the processed silicon layer, the absorptance loss due to material removal can be completely overcome. The resulting silicon structure, which is an array of holes with non-vertical sidewalls, shows promising light path enhancement and features an even higher absorptance than the initial nanodome structure of the unetched absorber.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sontheimer, T., Scherf, S., Klimm, C., Becker, C., and Rech, B., Journal of Applied Physics, vol. 110, p. 63530, 2011.CrossRefGoogle Scholar
Green, M., Applied Physics A, vol. 96, no. 1, pp. 153159, 2009.CrossRefGoogle Scholar
Yu, Z., Raman, A., and Fan, S., Optics Express, vol. 18, no. 103, pp. A366A380, 2010.CrossRefGoogle Scholar
Sontheimer, T., Rudigier-Voigt, E., Bockmeyer, M., Klimm, C., Schubert-Bischoff, P., Becker, C., and Rech, B., physica status solidi (RRL), vol. 5, pp. 376378, 2011.CrossRefGoogle Scholar
Zhu, J., Hsu, C. M., Yu, Z., Fan, S., and Cui, Y., Nano letters, vol. 10, no. 6, pp. 19791984, 2009.CrossRefGoogle Scholar
Lockau, D., Sontheimer, T., Becker, C., Rudigier-Voigt, E., Schmidt, F., and Rech, B., Opt. Express, vol.21, no. S1, pp. A42A52.CrossRefGoogle Scholar
Rudigier-Voigt, E., Bockmeyer, M., Hagemann, V., and Bauer, S., in 24th European Photovoltaic Solar Energy Conference, 2009.Google Scholar
Burger, S., Zschiedrich, L., Pomplun, J., and Schmidt, F., in Integrated Photonics and Nanophotonics Research and Applications, 2008, p. ITuE4.Google Scholar
Palik, E. D. and Ghosh, G., Handbook of optical constants of solids. Academic press, 1998.Google Scholar
French, R. H., Rodriguez-Parada, J. M., Yang, M. K., Derryberry, R. a., Lemon, M. F., Brown, M. J., Haeger, C. R., Samuels, S. L., Romano, E. C., and Richardson, R. E., 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000394000399, 2009.CrossRefGoogle Scholar
Pflug, A., Sittinger, V., Ruske, F., Szyszka, B., and Dittmar, G., Thin Solid Films , vol. 455456, pp. 201206, 2004.CrossRefGoogle Scholar
Ruske, F., Wimmer, M., Köppel, G., Pflug, A., and Rech, B., Proc. of SPIE, vol. 8263, p. 826303, 2012.CrossRefGoogle Scholar
Haase, C. and Stiebig, H., Applied Physics Letters, vol. 91, p. 61116, 2007.CrossRefGoogle Scholar
Becker, C., Preidel, V., Sontheimer, T., Klimm, C., Rudigier-Voigt, E., Bockmeyer, M., and Rech, B., Physica Status Solidi (C), vol. 9, no. 10–11, pp. 20792082, 2012.CrossRefGoogle Scholar
Haug, F. J., Soderstrom, T., Cubero, O., Terrazzoni-Daudrix, V., and Ballif, C., Journal of Applied Physics, vol. 104, no. 6, p. 64509, 2008.CrossRefGoogle Scholar
Berginski, M., Rech, B., Hüpkes, J., Stiebig, H., and Wuttig, M., in Proc. SPIE 6197, 2006, p. 61970Y.CrossRefGoogle Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 1220, 2012.CrossRefGoogle Scholar