No CrossRef data available.
Published online by Cambridge University Press: 15 January 2013
Optical band-gap and cathode luminescence (CL) properties of anatase TiO2 nanopowders mixed with γ- Al2O3 powders by planetary ball mill were evaluated as a function of a powder mass ratio (x=Al2O3/TiO2) of 0 to 0.5 and their correlation with XRD spectra was also investigated. The optical band-gap of TiO2 increased from 3.36 eV to 3.41eV with increasing milling time (tm) up to 600 min, which was in good agreement with the blue shifts observed in the CL spectra with increasing tm and it was interpreted as a quantum size effect. In addition, the optical band-gap of TiO2 powders mixed with Al2O3 with tm=60min greatly increased from 3.36 eV to 3.48 eV with increasing x up to x=0.5. On the other hand, the optical band-gap of all the powders was decreased by annealing at temperatures above 600°C, which was evidenced by the XRD spectra to be due to the growth of grain size.