Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:46:36.286Z Has data issue: false hasContentIssue false

Optical and Electronic Characterization of a-SiGe:H Thin Films Prepared by a Novel Hollow Cathode Deposition Technique

Published online by Cambridge University Press:  21 March 2011

R. J. Soukup
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
N. J. Ianno
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
Scott A. Darveau
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, USA
Christopher L. Exstrom
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, USA
Get access

Abstract

Using a novel hollow cathode plasma-jet reactive sputtering system in which an intense plasma, ignited in an Ar/H2 flow, is directed through silicon and germanium nozzles, a series of a-SiGe:H thin films have been prepared on silicon and glass substrates. These films have been optically characterized by infrared (IR) spectroscopy and spectroscopic ellipsometry (335-1000nm). Total hydrogen concentrations, as determined by FTIR, varied with deposition conditions and ranged from 2.5 × 1021 to 1.6 × 1022 atom cm−3 and correlated with secondary ion mass spectrometry (SIMS) elemental analyses to within 10%. Conductivity measurements in the dark and under simulated AM1 solar illumination have indicated that the films properties are very good. The light to dark conductivity ratio has consistently been greater than 1000 for films with band gaps down to 1.3 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zweibel, K., Solar Energy Mat. and Solar Cells 59, 1 (1999).Google Scholar
2. Deng, X., Liao, X., Han, S., Povolny, H., Agarwal, P., Solar Energy Mat. and Solar Cells 62, 89 (2000).Google Scholar
3. Yang, J., et. al. Proc. NREL/SNL PV Prog. Rev., Lakewood, CO, 1996, pp. 1326.Google Scholar
4. Molenbroek, E.C., Mahan, A.H., Johnson, E J and Gallagher, AC, J. Appl. Phys. 79, 7278 (1996).Google Scholar
5. Molenbroek, E.C., Mahan, A. H., Gallagher, Alan, J. Appl. Phys. 82, 1909 (1997).Google Scholar
6.NREL world wide web page, http://www.nrel.gov/ncpv/pvmenu.cgi?site=ncpv&idx= 1&body=world.htmlGoogle Scholar
7. Ruihua, W., et.al., Solar Energy Mat. and Solar Cells 62, 193 (2000).Google Scholar
8. Nelson, B.P., Xu, Y., Williamson, D.L., Roedern, B. Von, Mason, A., Heck, S., Mahan, A.H., Schmitt, S.E., Gallagher, A.C., Webb, J., and Reedy, R., MRS Proc. 507 (1998) 447452.Google Scholar
9. Sícha, M., Bárdos, L., Tichy, M., Soukup, L., Jastrabík, L., Baránková, H., Soukup, R.J. and Tous, J., Contrib. Plasma Phys. 34, 749 (1994).Google Scholar
10. Tichy, M., Sícha, M., Bárdos, L., Soukup, L., Jastrabík, L., Kapoun, K., Tous, J., Mazanec, Z. and Soukup, R. J., Contrib. Plasma Phys. 34, 765 (1994).Google Scholar
11. Soukup, L., Perina, V., Jastrabík, L., Sícha, M., Pokorny, P., Soukup, R.J., Novák, M., and Zemek, J., Surface and Coatings Technology 78, 280 (1996).Google Scholar
12. Pribil, G., Hubicka, Z., Soukup, R.J., and Ianno, N.J., J. Vac. Sci. Technol. A. 19, 1571 (2001).Google Scholar
13. Pribil, G., Soukup, R.J., and Ianno, N.J., “Deposition of a-Ge:H Films by a Hollow Cathode Plasma-Jet Sputtering System,” presented at the American Vacuum Symposium, Oct. 2001, San Francisco.Google Scholar
14. Soukup, R. J., Ianno, N. J., G.Pribil and Hubicka, Z., Surface and Coatings Technol., 177–178, 676 (2004).Google Scholar
15. Hubicka, Z., Pribil, G., Soukup, R. J., and Ianno, N. J., Surface and Coatings Technol. 160, 114 (2002).Google Scholar
16. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
17. Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F.J., Müller, G., and Kalbitzer, S., J. Non-Cryst. Solids 35 & 36, 255 (1980).Google Scholar
18. Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., Collins, R.W., Deng, X., and Ganguly, G., J. Appl. Phys. 92, 2424 (2002).Google Scholar
19. Brodsky, M.H., Cardona, M., and Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).Google Scholar
20. Mui, K. and Smith, F.W., Phys. Rev. B 38, 10623 (1988).Google Scholar
21. Mui, K. and Smith, F.W., Phys. Rev. B 35, 8080 (1987).Google Scholar
22. Mahan, H., NREL, private communication.Google Scholar
23. Stutzmann, M., Street, R.A., Tsai, C.C., Boyce, J.B., and Ready, S.E., J. Appl. Phys. 66, 569 (1989).Google Scholar
24. Heintze, M., Eberhardt, K., Tress, O., and Bauer, G.H., J. Non-Cryst. Solids 137 & 138, 49 (1991).Google Scholar