Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T14:40:05.829Z Has data issue: false hasContentIssue false

The Optical and Electrical Properties of SiOx(x<2) Thin Films Prepared by Pulsed Laser Deposition Technique

Published online by Cambridge University Press:  01 February 2011

Byoung Youl Park
Affiliation:
[email protected], University of Seoul, Nano Science & Technology, 90 Jeonnongdong Dongdaemungu, Seoul, 130-743, Korea, Republic of
Sol Lee
Affiliation:
[email protected], University of Seoul, Department of Nano Science & Technology, 90 Jeonnongdong Dongdaemungu, Seoul, 130-743, Korea, Republic of
Chang Hyun Bae
Affiliation:
[email protected], Kyung Hee University, Department of Chemistry, 1 Hoigidong Dongdaemungu, Seoul, 130-701, Korea, Republic of
Seung Min Park
Affiliation:
[email protected], Kyung Hee University, Department of Chemistry, 1 Hoigid ong Dongdaemungu, Seoul, 130-701, Korea, Republic of
Kyoungwan Park
Affiliation:
[email protected], University of Seoul, Department of Nano Science & Technology, 90 Jeonnongdong Dongdaemungu, Seoul, 130-743, Korea, Republic of
Get access

Abstract

SiOx (x<2) films were deposited in an O2 atmosphere using Si target in a pulsed laser deposition system. Post-annealing process was employed in an O2 atmosphere to form the nanometer-sized Si crystallites embedded in the SiO2 films. The transmission electron microscope analysis shows the existence of crystalline silicon nano-dots with diameters ranging from 2 to 4 nm. Also, the clear separation of Si and SiO2 phases can be seen in the X-ray photoemission spectra. Photoluminescence peak from the annealed films was obtained, which is attributed to the quantum confinement effect of the Si nano-dots. C-V measurements of the metal-oxide-silicon (MOS) structure containing the silicon nano-dots in the oxide layer were performed to investigate the charging/discharging behavior of the silicon nano-dots. The maximum program window of the MOS was measured to be4.1V under ±5V sweep.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Cabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
3. Brongersma, M. L., Polman, A., Min, K. S., Boer, E., Tambo, T., and Atwater, H. A., Appl. Phys. Lett. 72, 2577 (1998).Google Scholar
4. Kapetanakis, E., Normand, P., Tsoukalas, D., Beltsios, K., Stoemenos, J., Zhang, S., and Berg, J.. Appl. Phys. Lett. 77, 3450 (2000).Google Scholar
5. Ostraat, M. L., Blauwe, J. W. De, Green, M. L., Bell, L. D., Brongersma, M. L., Casperson, J., Flagan, R. C., and Atwater, H. A.. Appl. Phys. Lett. 79, 433 (2001).Google Scholar
6. Saitoh, M., Nagata, E., and Hiramoto, T.. Appl. Phys. Lett. 82, 1787 (2003).Google Scholar
7. Sung, S.-K., Park, I.-H., Lee, C. J., Lee, Y. K., Lee, J. D., Park, B.-G., Chae, S. D., and Kim, C. W.. IEEE Trans. Nanotechnol. 2, 258 (2003).Google Scholar
8. Kim, S. S., Cho, W.-J., Ahn, C.-G., Im, K., Yang, J.-H., Baek, I.-B., Lee, S., and Lim, K. S.. Appl. Phys. Lett. 88, 223502 (2006).Google Scholar
9. Choi, S.-H. and Elliman, R. G.;. Appl. Phys. Lett. 75, 968 (1999), S. Kim, S.-H. Choi, C. J. Park, H. Y. Cho, and R. G. Elliman, J. Korean. Phys. Soc. 45, S501 (2004).Google Scholar
10. Park, N.-M., Choi, S.-H., and Park, S.-J... Appl. Phys. Lett. 81, 1092 (2002).Google Scholar
11. Cho, C.-H., Kim, B.-H., Kim, T.-W., Park, S.-J., Park, N.-M., and Sung, G.-Y.. Appl. Phys. Lett. 86, 143107 (2005).Google Scholar
12. Shi, Y., Saito, K., Ishikuro, H., and Hiramoto, T.. J. Appl. Phys. 84, 2358 (1998).Google Scholar
13. Saitoh, M., Nagata, E., and Hiramoto, T... Appl. Phys. Lett. 82, 1787(2003).Google Scholar
14. Mazen, F., Baron, T., Papon, A.M., Truche, R., Hartmann, J.M.. Applied Surface Science 214, 359 (2003).Google Scholar
15. Suzuki, N., Makino, T., Yamada, Y., Yoshida, T., and Onari, S.. Appl. Phys. Lett.. 76, 1389 (2000), T. Makino, Y. Yamada, N. Suzuki, T. Yoshida, and S. Onari, J. Appl. Phys. 90, 5075 (2001).Google Scholar
16. Orii, T., Hirasawa, M., and Seto, T.,. Appl. Phys. Lett. 83, 3395 (2003).Google Scholar
17. Riabinina, D., Durand, C., Chaker, M., and Rosei, F.,. Appl. Phys. Lett. 88, 073105 (2006).Google Scholar
18. Caricato, A. P., Sario, M. De, Fernandez, M., Leggieri, G., Luches, A., Martino, M., and Prudenzano, F., Appl. Surf. Sci. 197, 458 (2002).Google Scholar
19. Lim, Y. and Park, K., J. Korean. Phys. Soc. 47, 1023 (2005).Google Scholar
20. Kim, T.-W., Cho, C.-H., Kim, B.-H., and Park, S.-J., . Appl. Phys. Lett. 88, 123102 (2006).Google Scholar
21. Allan, G., Delerue, C., and Lannoo, M.,. Appl. Phys. Lett. 71, 1189 (1997).Google Scholar
22. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chap. 7.Google Scholar
23. Lockwood, D. J., Lu, Z. H., and Baribeau, J.-M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
24. Park, N.-M., Jeon, S.-H., Yang, H.-D., Hwang, H., Park, S.-J., and Choi, S.-H.,. Appl. Phys. Lett. 83, 1014 (2003).Google Scholar