Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:24:38.840Z Has data issue: false hasContentIssue false

On-Site Correlation in Narrow Band Materials

Published online by Cambridge University Press:  10 February 2011

F. Manghi
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Modena, Via Campi 213/a, I-41100 Modena, Italy
V. Bellini
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Modena, Via Campi 213/a, I-41100 Modena, Italy
M. Rontani
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Modena, Via Campi 213/a, I-41100 Modena, Italy
C. Arcangeli
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
Get access

Abstract

We present the results of a recently developed approach where the interplay between the itinerant and localized character of electrons in narrow band materials is described by adding on-site correlation effects to a realistic band calculation: the single particle band states are treated as mean field solutions of a multi-orbital Hubbard Hamiltonian and the many-body term associated with localized e-e interaction is described in a configuration-interaction scheme. Quasi-particle states of nickel and CuGe03 have been calculated and compared with spectroscopical results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dagotto, E., Rev. Mod. Phys. 66, 763 (1994).Google Scholar
2. Eskes, H., Tjeng, L. H., and Sawatzky, G., Phys. Rev. B 41, 288 (1990).Google Scholar
3. Svane, Axel, Phys. Rev. Lett. 68, 1900 (1992).Google Scholar
4. Anisimov, V., Zaanen, J., and Andersen, O. K., Phys. Rev. B 44, 943 (1991).Google Scholar
5. Igarashi, J., J. Phys. Soc. Japan 52, 2827 (1983);Google Scholar
Igarashi, J., J. Phys. Soc. Japan 54, 260 (1985).Google Scholar
6. Calandra, C. and Manghi, F., Phys. Rev. B 50, 2061 (1994).Google Scholar
7. Manghi, F., Calandra, C., and Ossicini, S., Phys. Rev. Lett. 73, 3129 (1994).Google Scholar
8. Kanamori, J., Progr. Theoret. Phys. 30, 275 (1963)Google Scholar
9. Mattheiss, L. F., Phys. Rev. B 49, 14050 (1994).Google Scholar
10. Springer, M. and Aryasetiawan, F., to be published.Google Scholar
11. Kreutz, T. J., Aebi, P., and Osterwalder, J., Solid State Commun. 96, 339 (1995).Google Scholar
12. Manghi, F., Bellini, V., and Arcangeli, C., Phys. Rev. B 56, 7149 (1997).Google Scholar
13. Liebsch, A., Phys. Rev. Lett. 43, 1431 (1979).Google Scholar
14. Calandra, C. and Manghi, F., Phys. Rev. B 45, 5819 (1992).Google Scholar
15. Dederichs, P. H., Bluegel, S., Zeller, R., and Akai, H., Phys. Rev. Lett. 53, 2512 (1984).Google Scholar
16. Rontani, M., Rossi, F., Manghi, F., and Molinari, E., submitted.Google Scholar