Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T10:26:57.709Z Has data issue: false hasContentIssue false

Nucleation Studies of HfO2 Thin Films Produced by Atomic Layer Deposition

Published online by Cambridge University Press:  01 February 2011

Justin C. Hackley
Affiliation:
[email protected], UMBC, Physics, 1000 Hilltop Circle, Baltimore, MD, 21250, United States
J. Derek Demaree
Affiliation:
[email protected], Army Research Laboratory, Weapons & Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, MD, 21005-5069, United States
Theodosia Gougousi
Affiliation:
[email protected], UMBC, Physics, 1000 Hilltop Circle, Baltimore, MD, 21250, United States, 410 4556874, 410 4551072
Get access

Abstract

A hot wall Atomic Layer Deposition (ALD) flow reactor equipped with a Quartz Crystal Microbalance (QCM) has been used for the deposition of HfO2 thin films with tetrakis (dimethylamino) hafnium (TDMAH) and H2O as precursors. HfO2 films were deposited on H-terminated Si and SC1 chemical oxide starting surfaces. Spectroscopic ellipsometry (SE) and QCM measurements confirm linear growth of the films at a substrate temperature of 275°C. FTIR spectra indicate the films are amorphous as-deposited. Two distinct growth regimes are observed: from 1-50 cycles, both surfaces display similar growth rates of about 1.0Å/cycle; from 50-200 cycles, HfO2 growth is decreased by about 15% to ~0.87Å/cycle on both surfaces. Nucleation and initial growth behavior of the films on Si-H were examined using X-ray photoelectron spectroscopy (XPS). Angle-resolved XPS, at take-off angles of θ=0, 15, 30, 45 and 60° measured from the normal to the sample surface, is used to probe the interfacial region of thin films (4, 7, 10, 15 and 25 cycles) on H-terminated samples. Initially, an interfacial layer comprised of a SiOx/HfSiOx mixture is grown between 1-10 ALD cycles. We observe that the Si/HfO2 interface is unstable, and oxidation continues up to the 25th ALD cycle, reaching a thickness of ~18Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Raghu, P., Rana, N., Yim, C., Shero, E., Shadman, F., J. Electro. Soc., 150 F186–F193 (2003).Google Scholar
2 Dennis, M. , Hausmann, Kim, Esther, Becker, Jill, and Gordon, Roy G., Chem. Mater., 14 43504358 (2002).Google Scholar
3 Green, M.L., Ho, M.-Y., Busch, B., Wilk, G.D., Sorsch, T., Conard, T., Brijs, B., Vandervorst, W., Räisänen, P.I., Muller, D., Bude, M., Grazul, J., J. Appl. Phys., 92 7169 (2002).Google Scholar
4 Chung, K.B., Whang, C.N., Chang, H.S., Moon, D.W., Cho, M.-H., J. Vac. Sci. Technol. A, 25(1) 141 (2007).Google Scholar
5 Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys., 89 5243 (2001).Google Scholar
6 Liu, X., Ramanathan, S., Seidel, T.E., Mat. Res. Soc. Symp. Proc., 765 D3.8.1(2003).Google Scholar
7 Kukli, K., Pilvi, T., Ritala, M., Sajavaara, T., Lu, J., Leskela, M., Thin Solid Films, 491 328338 (2005).Google Scholar
8 Powell, C.J., Jablonski, A., J. Elec. Spec., 100 137160 (1999).Google Scholar
9 Tomida, K., Shimizu, H., Kita, K., Kyuno, K., Toriumi, A., Mat. Res. Soc. Symp. Proc., 811 D10.9 (2004).Google Scholar
10 Almeida, R.M.C. de, Baumvol, I.J.R., Surface Science Reports, 49 1114 (2003).Google Scholar
11 Puurunen, R. L., Vandervorst, W., Besling, W. F. A., Richard, O., Bender, H., Conard, T., Zhao, C., Delabie, A., Caymax, M., Gendt, S. De, Heyns, M., Viitanen, M. M., Ridder, M. de, Brongersma, H. H., Tamminga, Y., Dao, T., Win, T. de, Verheijen, M., Kaiser, M., Tuominen, M. J.Appl. Phys. 96(9), 4878 (2004).Google Scholar