No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Experimental wet chemical approaches have been demonstrated in the synthesis of a new chainlike (C60-Fe-C60-Fe)n complex. This structure has been proposed based on 13C solid-state nuclear magnetic resonance, electron paramagnetic resonance, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature-programmed desorption. The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Volumetric measurements at 77 K and 2 bar show a hydrogen adsorption capacity of 0.5 wt%. Interestingly, the BET surface area is ∼31 m2/g after degassing, which is approximately an order of magnitude less than expected given the measured experimental hydrogen capacity. Nitrogen and hydrogen isotherms performed at 75 K also show a marked selectivity for hydrogen over nitrogen for this complex, indicating hidden surface area for hydrogen adsorption.