Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:44:10.947Z Has data issue: false hasContentIssue false

Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage

Published online by Cambridge University Press:  01 February 2011

Erin Whitney
Affiliation:
[email protected], National Renewable Energy Laboratory, Energy Sciences, 1617 Cole Blvd, Golden, CO, 80401, United States
Anne C. Dillon
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Calvin Curtis
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Chaiwat Engtrakul
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Kevin O'Neill
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Mark Davis
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Lin Simpson
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Kim Jones
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Yufeng Zhao
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Yong-Hyun Kim
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Shengbai Zhang
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Philip Parilla
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Get access

Abstract

Experimental wet chemical approaches have been demonstrated in the synthesis of a new chainlike (C60-Fe-C60-Fe)n complex. This structure has been proposed based on 13C solid-state nuclear magnetic resonance, electron paramagnetic resonance, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature-programmed desorption. The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Volumetric measurements at 77 K and 2 bar show a hydrogen adsorption capacity of 0.5 wt%. Interestingly, the BET surface area is ∼31 m2/g after degassing, which is approximately an order of magnitude less than expected given the measured experimental hydrogen capacity. Nitrogen and hydrogen isotherms performed at 75 K also show a marked selectivity for hydrogen over nitrogen for this complex, indicating hidden surface area for hydrogen adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogner, H.-H., Int. J. Hydrogen Energy 23, 833 (1998).10.1016/S0360-3199(97)00124-9Google Scholar
2 http://www.eere.energy.gov/hydrogenandfuelcells/mypp/.Google Scholar
3 http://www.sc.doe.gov/bes/hydrogen.pdf.Google Scholar
4 Dillon, A. C. and Heben, M. J., Appl. Phys. A 72, 133142 (2001).Google Scholar
5 Dillon, A. C., Blackburn, J. L., Parilla, P. A., Zhao, Y., Kim, Y.-H., Zhang, S. B., Mahan, A. H., Alleman, J. L., Jones, K. M., Gilbert, K. E. H., and Hebern, M. J., in Discovering the Mechanism of H2 Adsorption on Aromatic Carbon Nanostructures to Develop Adsorbents for Vehicular Applications, Boston, Massachusetts, 2004 (Materials Research Society), p. 117124.Google Scholar
6 Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377379 (1997).Google Scholar
7 Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J., and Wasserman, H. J., J. Am. Chem. Soc. 106, 451452 (1984).Google Scholar
8 Kubas, G. J., J. Organometall. Chem. 635, 3768 (2001).Google Scholar
9 Le-Husebo, T. and Jensen, C. M., Inorg. Chem. 32, 37973798 (1993).10.1021/ic00070a002Google Scholar
10 Niu, J., Rao, K., and Jena, P., Phys. Rev. Lett. 68, 22772280 (1992).10.1103/PhysRevLett.68.2277Google Scholar
11 Maseras, F. and Lledos, A., Chem. Rev. 100, 601636 (2000).Google Scholar
12 Michael, D. and Mingos, P., J. Organometall. Chem. 635, 1 (2001).Google Scholar
13 Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162163 (1985).Google Scholar
14 Tast, F., Malinowski, N., Frank, S., Heinebrodt, M., Billas, I. M. L., and Martin, T. P., Phys. Rev. Lett. 77, 35293532 (1996).Google Scholar
15 Zhao, Y., Kim, Y.-H., Dillon, A. C., Heben, M. J., and Zhang, S. B., Phys. Rev. Lett. 94, 155504 (2005).Google Scholar
16 Brady, F. J., Cardin, D. J., and Domin, M., J. Organometall. Chem. 491, 169172 (1995).10.1016/0022-328X(94)05249-BGoogle Scholar
17 Fagan, P. J., Calabrese, J. C., and Malone, B., Acc. Chem. Res. 25, 134142 (1992).Google Scholar
18 Hsu, H.-F., Du, Y., Albrecht-Schmitt, T. E., Wlson, S. R., and Shapley, J. R., Organometallics 17, 17561761 (1998).Google Scholar
19 Olmstead, M. M., Hao, L., and Balch, A. L., J. Organometall. Chem. 578, 8590 (1998).10.1016/S0022-328X(98)01108-5Google Scholar
20 Song, L.-C., Yu, G.-A., Su, F.-H., and Hu, Q.-M., Organometallics 23, 41924198 (2004).Google Scholar
21 Thompson, D. M., Bengough, M., and Baird, M. C., Organometallics 21, 47624770 (2002).Google Scholar
22 Sawamura, M., Toganoh, M., Kuninobu, Y., Kato, S., and Nakamura, E., Chem. Lett. 29, 270 (2000).Google Scholar
23 Sun, Q., Wang, Q., Jena, P., and Kawazoe, Y., J. Am. Chem. Soc. 127, 1458214583 (2005).Google Scholar
24 Yildirim, T. and Ciraci, S., Phys. Rev. Lett. 94, 175501 (2005).Google Scholar
25 Engtrakul, C., Davis, M. R., Gennett, T., Dillon, A. C., Jones, K. M., and Heben, M. J., J. Am. Chem. Soc. 127, 1754817555 (2005).10.1021/ja0557886Google Scholar
26 Madix, R. J., in Chemistry and Physics of Solid Surfaces, edited by Vanselov, R. (CRC, Boca Raton, 1979), p. 6372.Google Scholar