Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T17:07:13.150Z Has data issue: false hasContentIssue false

Nonvolatile Memory Device Based On Nanoparticle Functionalized Tobacco Mosaic Virus

Published online by Cambridge University Press:  01 February 2011

Chunglin Tsai
Affiliation:
[email protected], ., ., ., ., ., Japan
Ricky J. Tseng
Affiliation:
[email protected], University of California at Los Angeles, Material Science and Engineering, Los Angeles, CA, 90095, United States
Yang Yang
Affiliation:
[email protected], University of California at Los Angeles, Material Science and Engineering, Los Angeles, CA, 90095, United States
Cengiz S. Ozkan
Affiliation:
[email protected], University of California at Riverside, Mechanical Engineering, Riverside, CA, 92521, United States
Get access

Abstract

Hybrid virus/inorganic nanoscrystals are considered as important building blocks towards new types of functionality for electronic devices. We use tobacco mosaic viruses to assemble platinum nanoparticles and conjugate with quantum dots. By forming a thin hybrid nanocomposite layer in the crossbar junction, we show electronic memory effect based on electrical bistable states with a large on/off ratio, and long retention time. Such hybrid bio-inorganic nanostructures for the first time are promising for future bio-inspired nanoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knez, M., Sumser, M., A. Bittner, M., Wege, C., Jeske, H., Martin, T. P., and Kern, K., Adv. Funct. Mater. 14, 116 (2004).Google Scholar
2. Mao, C., Solis, D. J, Reiss, B. D, Kottmann, S. T, Sweeney, R. Y, Hayhurst, A., Georgiou, G., Iverson, B., and Belcher, A. M., Science 303, 213 (2004).Google Scholar
3. Lee, S. –K., Mao, C., Flynn, C. E, and Belcher, A. M., Science 296, 892 (2002).Google Scholar
4. Chung, S. –K., Ginger, D. S, Morales, M. W, Zhang, Z., V. Chandrasekhar, Ratner, M. A, and Mirkin, C. A., Small 1, 64 (2005).Google Scholar
5. Nam, K. T., Kim, D. W, Yoo, P. J, Chiang, C. Y, Meethong, N., Hammond, P. T, Chiang, Y. M, and Belcher, A. M., Science 312, 885 (2006).Google Scholar
6. Tseng, R. J., Tsai, C., Ma, L., Ouyang, J., Ozkan, C. S, and Yang, Y., Nat. Nanotech. 1, 72 (2006).Google Scholar
7. Tseng, R. J., Huang, J., Ouyang, J., Kaner, R. B, and Yang, Y., Nano Lett. 5, 1077 (2005).Google Scholar
8. Wu, J., Ma, L., and Yang, Y., Phys. Rev. B 69, 115321 (2004).Google Scholar