Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T09:17:14.536Z Has data issue: false hasContentIssue false

Non-Destructive Electrical Techniques as Means for Understanding the Basic Mechanisms of Electromigration

Published online by Cambridge University Press:  25 February 2011

A. Scorzoni
Affiliation:
CNR - Istituto LAMEL, via P. Gobetti 101, 40129 Bologna, Italy
I. De Munari
Affiliation:
Dipartimento di Ingegneria dell’Informazione, Università di Parma, v.le delle Scienze, 43100 Parma, Italy
H. Stulens
Affiliation:
Material Physics Division, Institute for Material Research (IMO), Limburg University Centre, B-3590 Diepenbeek, Belgium.
Get access

Abstract

In this paper results of recently developed high resolution resistometric electromigration techniques will be described, with particular attention to the behaviour of narrow, near-bamboo metal lines. After a discussion on recent theoretical results published in the literature, a diffusion model correlating mechanical stress and electromigration will be adopted to describe experimental results of relative resistance change both during and after electromigration. The good agreement between experimental data and simulations must not hide that something must still be understood about the physical mechanism leading to resistance changes during electromigration experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Scorzoni, A., Neri, B., Caprile, C., Fantini, F., Material Science Reports, 7 (4-5), 143 (1991).Google Scholar
2 Tezaki, A., Mineta, T., Egawa, II., Noguchi, T., Proc. 28th IEEE Int. Rel. Phys. Symp., 221 (1990).Google Scholar
3 Korhonen, M. A., LaFontaine, W. R., Børgesen, P., Che-Yu, Li, J. Appl. Phys., 70 (11), 6774 (1991).CrossRefGoogle Scholar
4 Kirchheim, R., Res, Mat.. Symp. Proc., 309, 101 (1993).Google Scholar
5 Li, Z., Bauer, C. L., Mahajan, S., Milnes, A. G., J. Appl. Phys., 72 (5), 1821 (1992).Google Scholar
6 Nix, W. D., Arzt, E., Metallurgical Trans. A, 23 A, 2007 (1992).Google Scholar
7 Niehof, J., de Graaf, H. C., Verwey, J. F., Proc. of the 4th Europ. Symp. on Reliab. of Electron Dev., Failure Phys. and Analysis (ESREF ‘93), Bordeaux (France), 135 (1993).Google Scholar
8 Korhonen, M. A., Børgesen, P., Brown, D. D., Che-Yu, Li, J. Appl. Phys., 74 (8), 4995 (1993).CrossRefGoogle Scholar
9 Stals, L. M., Roggen, J., De Schepper, L., De Ceuninck, W., European patent, Application No. 90200990, publication No. 0395149A1. Patent for USA and Japan pending.Google Scholar
10 Baldini, G. L., Scorzoni, A., IEEE Trans. on Electron Devices, 38 (3), 469 (1991).CrossRefGoogle Scholar
11 Lloyd, J. R., Koch, R. II., Proc. 25th IEEE Int. Rel. Phys. Symp., 161 (1987)Google Scholar
12 Niehof, J., Flinn, P. A., Maloney, T. J., ESREF ‘92, Schwäbisch Gmiind (Germany), 359 (1992).Google Scholar
13 Hummel, R. E., Dehoff, R. T., Geier, II. J., J. Phys. Chem. Solids, 37, 73 (1976).Google Scholar
14 Pasco, R. W., Schwarz, J. A., Proc. 21st IEEE Int. Rel. Phys. Symp., 10 (1983).Google Scholar
15 Børgesen, P., Korhonen, M. A., Li, C.-Y., Thin Solid Films., 220, 8 (1992).CrossRefGoogle Scholar
16 Korhonen, M. A., Børgesen, P., Tu, K. N., Che-Yu, Li, J. Appl. Phys., 73 (8), 3790 (1993).CrossRefGoogle Scholar
17 Gardner, D. S., Flinn, P. A., J. Appl. Phys., 67 (4), 1831 (1990).Google Scholar
18 Scorzoni, A., Cardinali, G. C., Baldini, G. L., Soncini, G., Reliab, Microelectron.., 30, 123 (1990).Google Scholar
19 Li, Z., Bauer, C. L., Mahajan, S., Milnes, A. G., Appl. Phys. Lett., 61 (3), 276 (1992).CrossRefGoogle Scholar
20 D’Haeger, V., Stulens, H., De Ceuninck, W., De Schepper, L., Gallopyn, G., De Pauw, P., Stals, L. M., ESREF ‘93, Bordeaux (France), 141 (1993).Google Scholar
21 Baldini, G. L., Scorzoni, A., Tamarri, F., Microelectron. Reliab., 33, 1841 (1993).Google Scholar
22 LaCombe, D. J., Parks, E., Proc. 23nd IEEE Int. Rel. Phys. Symp., 74 (1985).Google Scholar
23 Thornton, J. A., Hoffman, D. W., Thin Solid Films, 171, 5 (1989)Google Scholar
24 Gardner, D. S., Flinn, P. A., IEEE Trans. on Electron Dev., ED-35, 2160 (1988).CrossRefGoogle Scholar
25 Stulens, H., Knuyt, G., De Ceunick, W.. De Schepper, L., Stals, L., in press in J. Appl. Phys., 75 (4) (1994).Google Scholar
26 Colgan, E. G., Rodbell, K. P., Vigliotti, D. R., Mat. Res. Soc. Symp. Proc., 309, 423 (1993).Google Scholar
27 D’Haeger, V., private communication.Google Scholar
28 Baldini, G. L., De Munari, I., Scorzoni, A., Tamarri, F., Caprile, C., Fantini, F., ESREF ‘93, Bordeaux (France), p. 147 (1993).Google Scholar
29 Carslaw, H. S., Jaeger, J. C., Conduction of Heat in Solids, 2nd ed., Oxford University Press (London, 1971).Google Scholar