Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:58:27.379Z Has data issue: false hasContentIssue false

New Relaxation Mechanism in Short Period Si/Ge Strained-Layer Superlattices

Published online by Cambridge University Press:  21 February 2011

Werner Wegscheider
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Karl Eberl
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Gerhard Abstreiter
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Hans Cerva
Affiliation:
Siemens AG, Research Laboratories, Otto Hahn Ring 6, D-8000 München 83, Federal Republic of Germany
Helmut Oppolzer
Affiliation:
Siemens AG, Research Laboratories, Otto Hahn Ring 6, D-8000 München 83, Federal Republic of Germany
Get access

Abstract

High quality Si/Ge strained-layer superlattices composed of a sequence of alternating 3 monolayers pure Si and 9 monolayers pure Ge have been grown by molecular beam epitaxy at 310°C on Ge(001) substrates. In order to investigate the transition from coherent to incoherent growth in these tensily strained structures a set of samples with varying number of superlattice periods has been studied by transmission electron microscopy. It is found that superlattices as thick as 33 nm at least show perfect and defect-free layer growth whereas for thicker superlattices strain accommodation occurs. For this strained heteroepitaxial system we observed, to our knowledge, for the first time the formation of microtwins as the only relaxation mechanism. High-resolution lattice imaging reveals that the twin lamellae result from successive glide of 90° (a/6)<112> Shockley partial dislocations on adjacent {111} planes from the surface towards the bulk. The activation barrier which has to be overcome in the case of 90° partial dislocations is compared with the energies required for the nucleation of 60° perfect and 30° partial misfit dislocation half-loops.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wegscheider, W., Eberl, K., Cerva, H. and Oppolzer, H., Appl. Phys. Lett. 55, 448 (1989).Google Scholar
2. Eberl, K., Wegscheider, W., Friess, E., and Abstreiter, G., in Nato ASI Series Vol. 160: Heterostructures on Silicon: One Step further with Silicon, edited by Nissim, Y., Rosencher, E. (Kluwer, Dordrecht, 1989), pp. 153160.Google Scholar
3. People, R., IEEE J. Quantum Electron. QE-22, 1696 (1986).Google Scholar
4. Abstreiter, G., Eberl, K., Friess, E., Wegscheider, W. and Zachai, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
5. Kasper, E., in Nato ASI Series Vol.160: Heterostructures on Silicon: One Step further with Silicon, edited by Nissim, Y., Rosencher, E. (Kluwer, Dordrecht, 1989), pp. 101119.Google Scholar
6. See, for example, Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J. and Bean, J. C., Phil. Mag. A 59, 1059 (1989), and references contained therein.10.1080/01418618908209837Google Scholar
7. Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
8. Van de Leur, R. H. M., Schellingerhout, A. J. G., Tuinstra, F., and Mooi, J. E., J. Appl. Phys. 64, 3043 (1988).Google Scholar
9. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and 1. Robinson, K., J. Vac. Sci. Technol. A 2, 436 (1984).10.1116/1.572361Google Scholar
10. Marklund, S., Phys. Stat. Sol. (b) 100, 77 (1980).Google Scholar
11. Marée, P. M. J., Barbour, J. C., Van der Veen, J. F., Kavanagh, K. L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar
12. See Hirth, J. P. and Lothe, J., Theory of dislocations, (Wiley, New York, 1982), p. 168.Google Scholar
13. Hull, R. and Bean, J. C., J. Vac. Sci. Technol. A L 2580 (1989).Google Scholar