Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T15:24:42.367Z Has data issue: false hasContentIssue false

New Palladium Nanomaterials for Catalysis: Mechanisms Controlling Formation and Evolution of Nanostructures in a Seed-Mediated Synthesis

Published online by Cambridge University Press:  01 February 2011

Laure Bisson
Affiliation:
[email protected], Institut Français du Pétrole, Catalyse et Séparation, BP n°3, Vernaison, 69390, France, 0478022020
Cédric Boissière
Affiliation:
[email protected], UPMC, Laboratoire de Chimie de la Matière Condensée de Paris, Paris, 75005, France
Clément Sanchez
Affiliation:
[email protected], Institut Français du Pétrole, Catalyse et Séparation, BP n°3, Vernaison, 69390, France
Cécile Thomazeau
Affiliation:
[email protected], Institut Français du Pétrole, Catalyse et Séparation, BP n°3, Vernaison, 69390, France
Denis Uzio
Affiliation:
[email protected], Institut Français du Pétrole, Catalyse et Séparation, BP n°3, Vernaison, 69390, France
Get access

Abstract

Metallic nanoparticles are commonly used as the active phase of heterogeneous catalysts. Today, a current issue in catalysis research is to determine whether a specific crystallographic plane of the metallic nanoparticle is responsible for activity and selectivity properties in a structure sensible reaction. Following this purpose, metallic nanoparticles with specific morphologies have been studied. In the present work, palladium nanostructured particles are prepared in a surfactant mediated aqueous medium by a seeding growth approach, and present various morphologies : rods, tetrahedra and/or bipyramides, cubes, icosahedra... Synthesis of these nanoparticles and observation of their growth by a detailed Transmission Electron Microscopy study will be presented. We provide evidence that nucleation and growth of these particles are dominated by an aggregative mechanism. Moreover, upon ageing nanostructured particles undergo a ripening process to spherical morphology, attributed to an oxidative etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jana, N. R., Gearheart, L., Murphy, C. J., Journal of Physical Chemistry B 105, 4065 (2001).Google Scholar
2. Sau, T. K., Murphy, C. J., Journal of the American Chemical Society 126, 8648 (2004).Google Scholar
3. Gole, A., Murphy, C. J., Chemistry of Materials 16, 3633 (2004).Google Scholar
4. Gao, J., Bender, C. M., Murphy, C. J., Langmuir 19, 9065 (2003).Google Scholar
5. Nikoobakht, B., El-Sayed, M. A., Langmuir 17, 6368 (2001).Google Scholar
6. Perez-Juste, J., Liz-Marzan, L. M., Carnie, S., Chan, D. Y. C., Mulvaney, P., Advanced Functional Materials 14, 571 (2004).Google Scholar
7. Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J., Mann, S., Journal of Materials Chemistry 12, 1765 (2002).Google Scholar
8. Berhault, G. et al. , Journal of Physical Chemistry B (In press).Google Scholar
9. Colfen, H., Antonietti, M., Angewandte Chemie-International Edition 44, 5576 (2005).Google Scholar
10. Penn, R. L., Journal of Physical Chemistry B 108, 12707 (2004).Google Scholar
11. Ribeiro, C., Lee, E. J. H., Longo, E., Leite, E. R., Chemphyschem 7, 664 (2006).Google Scholar
12. Giersig, M., Pastoriza-Santos, I., Liz-Marzan, L. M., Journal of Materials Chemistry 14, 607 (2004).Google Scholar
13. Wiley, B., Herricks, T., Sun, Y., Xia, Y., Nano Letters 4, 1733 (2004).Google Scholar
14. Xiong, Y. et al. , Journal of the American Chemical Society 127, 7332 (2005).Google Scholar
15. Stoermer, R. L., Sioss, J. A., Keating, C. D., Chemistry of Materials 17, 4356 (2005).Google Scholar
16. Chen, C. et al. , Nanotechnology 17, 466 (2006).Google Scholar