Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:16:03.950Z Has data issue: false hasContentIssue false

New Group 2 Compounds Useful for Preparation of thin films of Electronic Ceramics

Published online by Cambridge University Press:  25 February 2011

William S. Rees Jr
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Kerstin A. Dippel
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Michael W. Carris
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Celia R. Caballero
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Debra A. Moreno
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Werner Hesse
Affiliation:
Department of Chemistry and Materials Research and Technology Center, Florida State University, Tallahassee, FL. 32306–3006
Get access

Abstract

We have prepared examples of several new classes of group 2 compounds, including ether- and amine-substituted metallocenes, inter- and intra-molecular Lewis base stabilized bis(β-diketonates), and clam-shell oligioether bis(alkoxides), and investigated their use as potential sources in the preparation of ceramic materials from molecular precursors. Examinations have included vapor pressure measurements, hydrolytic, oxidative, thermal and photolytic stability, vapor phase, solution and solid state structures, and evaluation for potential CVD growth of thin films of electronic ceramics. Results to date indicate that intramolecular stabilization is more advantageous than intermolecular stabilization for achievement of optimal CVD source criteria, and that completion of the coordination sphere around the metal atom requires tuning of both ligand spatial and electronic requirements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a. Tonge, L. M., Richeson, D. S., Marks, T. J., Zhao, J., Zhang, J., Wessels, B. W., Marcy, H. O., and Kannewurf, C.R., in Electron Transfer in Biology and the Solid State: Inorganic Compounds With Unusual Properties, Part III, Johnson, M. K., King, R. B., Kurtz, D. M. Jr, Kutal, C., Norton, M. L., and Scott, R. A., Eds., ACS Advances in Chemistry Series 226; American Chemical Society: Washington, D.C., 1990; pp 351368. b W. S. Rees, Jr and A. R. Barron, manuscript in preparation.CrossRefGoogle Scholar
2. Stringfellow bookGoogle Scholar
3. a. Gardiner, R., Brown, D. W., and Kerlin, P. S., Chem. Mater., 1991, 3, 10531059.CrossRefGoogle Scholar
b. Purdy, A. P., Berry, A. D., Holm, R. J., Fatemi, M., and Gaskill, K. K., Inorg. Chem., 1989, 28, 2779.CrossRefGoogle Scholar
c. Spee, C. I. M. A. and Macker, A., in Science and Technology of Thin Film Superconductors, McConnell, R. D. and Wolfe, S. A., Eds., Plenum: New York, 1989, pp. 281294.CrossRefGoogle Scholar
4. Rees, W. S. Jr, and Moreno, D. A., J. Chem. Soc., Chem. Commun., 1991, 1759.Google Scholar
5. a. Rees, W. S. Jr, and Dippel, K. A., in Ultrastructure Processing of Ceramics, Glasses, Composites, Ordered Polymers, and Advanced Optical Materials V, Hench, L. L., West, J. K., and Ulrich, D. R., Eds.; Wiley: New York, 1992, in press. b W. S. Rees, Jr and K. A. Dipple, OPPI, accepted for publication.Google Scholar
6. Rees, W. S. Jr, Carris, M. W., and Hesse, W., Inorg. Chem., 1991, 30, 4479.CrossRefGoogle Scholar
7. Rees, W. S. Jr, Caballero, C. R., and Hesse, W., Angew. Chem., 1992, in press.Google Scholar
a. Burns, C. J. and Andersen, R. A., J. Organomet. Chem., 1987, 325, 3137.CrossRefGoogle Scholar
9. Williams, R. A., Hanusa, T. P., and Huffman, J. C., J. Am. Chem. Soc, 1990, 112, 24542455.CrossRefGoogle Scholar
10. Hanusa, T. P., unpublished result, personal communication.Google Scholar
11. Turnipseed, S. B., Barkley, R. M., Sievers, R. E., Inorg. Chem., 1991, 30, 1164.CrossRefGoogle Scholar
12. Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides, Academic Press: New York, 1978, p. 50.Google Scholar
13. Poncelet, O., Hubert-Pfalzgraf, L. G., Toupet, L., and Parson, J. C., Polyhedron, 1991, 10, 20452050.CrossRefGoogle Scholar
14. Hitchcock, P. B., Lappert, M. F., Lawless, G. A., and Royo, B., J. Chem. Soc., Chem. Commun., 1990, 1141.Google Scholar
15. Gleizes, A., Sans-Lenain, S., Médus, D., and Morancho, R., C. R. Acad. Sci., Paris, 1991, 312, II, 983988.Google Scholar
16. Caulton, K. G., Chisholm, M. H., Drake, S. R., and Folting, K., J. Chem. Soc., Chem. Commun., 1990, 13491351.Google Scholar
17. Caulton, K. G., Chisholm, M. H., Drake, S. R., and Folting, K., Inorg. Chem., 1991, 30, 15001503.CrossRefGoogle Scholar
18. Caulton, K. G., Chisholm, M. H., Drake, S. R., and Streib, W. E., Angew. Chem., 1990, 102, 14921493.CrossRefGoogle Scholar