Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:46:05.978Z Has data issue: false hasContentIssue false

New Experimental Method to Precisely Examine the LUMO Levels of Organic Semiconductors and Application to the Fullerene Derivatives

Published online by Cambridge University Press:  18 March 2013

Hiroyuki Yoshida*
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. JST PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
*
Get access

Abstract

Inverse-photoemission spectroscopy (IPES) in the near-ultraviolet range is a new tool for investigating the LUMO levels of organic materials. Previous IPES methods have had two serious weaknesses, i.e. low energy resolution and sample damage to organic materials. In the present method, on the other hand, the irradiation damage to the organic sample is significantly reduced by decreasing the kinetic energy of electrons below the damage threshold. The energy resolution of the instrument is improved by a factor of two to 0.3 eV by using multilayer band pass filters. Acceptor materials widely used in organic photovoltaic cells, C60 and phenyl-C61-butyric acid methyl ester (PC61BM), are measured with this new technique to determine the electron affinities.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Fromherz, T., Rispens, M. T., Sanchez, L., and Hummelen, J. C., Adv. Func. Mater. 11 (2001) 374.3.0.CO;2-W>CrossRefGoogle Scholar
Scharber, M. C., Wuhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., and Brabec, C. L., Adv. Mater. 18 (2006) 789.CrossRefGoogle Scholar
Hill, I. G., Kahn, A., Soos, Z. G., and Pascal, R. A., Chem. Phys. Lett. 327 (2000) 181.CrossRefGoogle Scholar
Knupfer, M., Appl. Phys. A-Mater. Sci. Process. 77 (2003) 623.CrossRefGoogle Scholar
Johnson, P.D., Davenport, J.W., Phy. Rev. B 31 (1985) 7521.CrossRefGoogle Scholar
Dose, V., Appl. Phys. 14 (1977) 117.CrossRefGoogle Scholar
Denninger, G., Dose, V., and Scheidt, H., Appl. Phys. 18 (1979) 375.CrossRefGoogle Scholar
Yoshida, H., Chem. Phys. Lett. 539540 (2012) 180.CrossRefGoogle Scholar
Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L., Science 287 (2000) 1658.Google Scholar
Sato, N., Yoshida, H., and Tsutsumi, K., J. Elect. Spectrosc. Relat. Phenom. 88 (1998) 861.CrossRefGoogle Scholar
Akaike, K., Kanai, K., Yoshida, H., Tsutsumi, J., Nishi, T., Sato, N., Ouchi, Y., and Seki, K., J. Appl. Phys. 104 (2008) 023710.CrossRefGoogle Scholar
Zhao, W. and Kahn, A., J. Appl. Phys. 105 (2009) 123711.CrossRefGoogle Scholar
Guan, Z. L., Kim, J. B., Wang, H., Jaye, C., Fischer, D. A., Loo, Y. L., and Kahn, A., Org. Elect 11 (2010) 1779.CrossRefGoogle Scholar