Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:43:51.309Z Has data issue: false hasContentIssue false

Nature of the Green Luminescent Center in Zinc Oxide

Published online by Cambridge University Press:  10 February 2011

K. Vanheusden
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1345
W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1345
C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1345
D. R. Tallant
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1345
J. Caruso
Affiliation:
Nanochem Research Inc., 11102 San Rafael NE, Albuquerque, New Mexico 87122
M. J. Hampden-Smith
Affiliation:
Nanochem Research Inc., 11102 San Rafael NE, Albuquerque, New Mexico 87122
T. T. Kodas
Affiliation:
Nanochem Research Inc., 11102 San Rafael NE, Albuquerque, New Mexico 87122
Get access

Abstract

We apply a number of complementary characterization techniques including electron paramagnetic resonance, optical absorption, and photoluminescence spectroscopies to characterize a wide range of different ZnO phosphor powders. We generally observe a good correlation between the 510-nm green emission intensity and the density of paramagnetic isolated oxygen vacancies. In addition, both quantities are found to peak at a free-carrier concentration ne, of about 1.4 × 1018 cm-3. We also find that the green emission intensity can be strongly influenced by free-carrier depletion at the particle surface, especially for small particles and/or low doping. Our data suggest that the green PL in ZnO phosphors is due to the recombination of electrons in singly occupied oxygen vacancies with photoexcited holes in the valence band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kasai, P. H., Phys. Rev. 130, 989 (1963).Google Scholar
[2] Riehl, N. and Ortman, H., Z. Elektrochem. 60, 149 (1956).Google Scholar
[3] Kröger, F. A. and Vink, H. J., J. Chem. Phys. 22, 250 (1954).Google Scholar
[4] Ozawa, L., Cathodoluminescence Theory and Applications, (VCH Publishers, New York, NY, 1990), p. 255.Google Scholar
[5] Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R., and Voigt, J. A., Appl. Phys. Lett. 68, 403 (1996).Google Scholar
[6] Senzaki, Y., Caruso, J., Hampden-Smith, M. J., Kodas, T. T., and L-M Wang, J. Am. Ceram. Soc. 78, 2973 (1995); C. Roger, T. Corbitt, C. Xu, D. Zeng, Q. Powell, C. D. Chandler, M. Nyman, M. J. Hampden-Smith, and T. T. Kodas, Nanostructured Mater. 4, 29 (1994); A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol Sci. and Technol. 19,411, (1993).Google Scholar
[7] Jackson, W. B., Amer, N. M., Boccara, A. C., and Fournier, D., Appl. Opt. 20, 1333 (1981).Google Scholar
[8] Seager, C. H. and Land, C. E., Appl. Phys. Lett. 45, 395 (1984).Google Scholar
[9] Thomas, D. G., J. Phys. Chem. Solids 9, 31 (1958).Google Scholar
[10] Hoffmann, K. and Hahn, D., Phys. Status Solidi A 24, 637 (1974).Google Scholar
[11] Völkel, A. Pöppl and G., Phys. Status Solidi A 125, 571 (1991).Google Scholar
[12] Mahan, G. D., J. Appl. Phys. 54, 3825 (1983).Google Scholar
[13] Liu, M., Kitai, A. H., and Mascher, P., J. Luminescence 54, 35 (1992).Google Scholar
[14] Heiland, G. et al., Solid State Phys. 8, 193 (1959).Google Scholar
[15] Vanheusden, K., Warren, W. L., Voigt, J. A., Seager, C. H., and Tallant, D. R., Appl. Phys. Lett. 67, 1280 (1995).Google Scholar