Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:54:02.898Z Has data issue: false hasContentIssue false

Multi-Layered SiC Nanocrystals Embedded in SiO2 Dielectrics for Nonvolatile Memory Application

Published online by Cambridge University Press:  31 January 2011

Dong Uk Lee
Affiliation:
[email protected], Hanyang Universiyu, Physics, Seoul, Korea, Republic of
Tae Hee Lee
Affiliation:
[email protected], Hanyang Universiyu, Physics, Seoul, Korea, Republic of
Eun Kyu Kim
Affiliation:
[email protected], Hanyang Universiyu, Physics, Seoul, Korea, Republic of
Jin-Wook Shin
Affiliation:
[email protected], Kwangwoon University, Electronic Materials Engineering, 139-701, Korea, Republic of
Won-Ju Cho
Affiliation:
[email protected], Kwangwoon University, Electronic Materials Engineering, 139-701, Korea, Republic of
Get access

Abstract

A nonvolatile memory device with the multi-layered SiC nanocrystals embedded in the SiO2 dielectrics for long-term data storage was fabricated and its electrical properties were evaluated. The SiC nanocrystals were formed by using post thermal annealing process. The transmission electron microscope analysis showed the multi-layered SiC nanocrystals between the tunnel and the control oxide layers. The average size and density of the SiC nanocrystals were approximately 5 nm and 2×1012 cm-2, respectively. The memory window of nonvolatile memory devices with the multi-layered of SiC nanocrystals was about 2.7 V during the operations at ±10 V for 700 ms, and then it was maintained around at 1.1 V after 105 sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hanafi, H. I., Tiwari, S., Khan, I., IEEE Trans. Electron Devices, 43, 1553 (1996).Google Scholar
2 Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
3 Lee, D. U., Lee, M. S., Kim, J.-H., Kim, E. K., Koo, H.-M., Cho, W.-J., and Kim, W. M., Appl. Phys. Lett. 90, 093514 (2007).Google Scholar
4 Lee, M. S., Lee, D. U., Kim, J.-H., Kim, E. K., Kim, W. M., and Cho, W.-J., Jpn. J. Appl. Phys. 46, 6202 (2007).Google Scholar
5 Chen, W.-R., Chang, T.-C., Liu, P.-T., Yeh, J.-L., Tu, C.-H., Lou, J.-C., Yeh, C.-F., and Chang, C.-Y., Appl. Phys. Lett. 91, 082103 (2007).Google Scholar
6 Liu, C.-W., Cheng, C.-L., Huang, S.-W., Jeng, J.-T., Shiau, S.-H., and Dai, B.-T., Appl. Phys. Lett. 91, 042107 (2007).Google Scholar
7 Koo, H.-M., Cho, W.-J., Lee, D. U., Kim, S. P., and Kim, E. K., Appl. Phys. Lett. 91, 043513 (2007).Google Scholar
8 Dufourcq, J., Bodnar, S., Gay, G., Lafond, D., Mur, P., Molas, G., Nieto, J. P., Vandroux, L., Jodin, L., Gustavo, F., and Baron, Th., Appl. Phys. Lett. 92, 073102 (2008).Google Scholar
9 Zhu, Y., Li, B., and Liu, J., J. Appl. Phys. 101, 063702 (2007).Google Scholar
10 She, M. and King, T.-J., IEEE Trans. Electron Devices 50, 1934 (2003).Google Scholar
11 Guo, Y. P., Zheng, J. C., Wee, A. T. S., Huan, C. H. A., Li, K., Pan, J. S., Feng, Z.C., and Chua, S. J., Chem. Phys. Lett.339, 319 (2001).Google Scholar
12 Li, J.-J., Jia, S.-L., Du, X.-W., and Zhao, N.-Q., Surf. Coat. Technol. 201, 5408 (2007).Google Scholar
13 Kulikovsky, V., Vorlicek, V., Bohac, P., Stranyanek, M., Ctvrlik, R., Kurdyumov, A., and Jastrabik, L., Surf. Coat. Technol. 202, 1738 (2008).Google Scholar
14 Song, D., Cho, E.-C., Cho, Y.-H., Conibeer, G., Huang, Y., Huang, S., and Green, M. A., Thin Solid Films 516, 3824 (2008).Google Scholar
15 Cho, W.-J., Ahn, C.-G., Im, K., Yang, J.-H., Oh, J., Baek, I.-B., and Lee, S., IEEE Electron Devices Lett. 25, 366 (2004).Google Scholar
16 Lee, T. H., Lee, D. U., Kim, S. P., and Kim, E. K., Jpn. J. Appl. Phys. 47, 4992 (2008).Google Scholar