Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:54:17.409Z Has data issue: false hasContentIssue false

Monolithic GaAs/Si Integration

Published online by Cambridge University Press:  28 February 2011

George W. Turner
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
H. K. Choi
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
J. P. Mattia
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
C. L. Chen
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
S. J. Eglash
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073
Get access

Abstract

The recent demonstrations of room-temperature cw operation of diode lasers fabricated in GaAs/AlGaAs layers grown on Si wafers have encouraged efforts to develop monolithic GaAs/Si integration technology for applications such as optical interconnects between VLSI subsystems. This paper summarizes our current work in this area, which is focused on the development of a highspeed, MSI-scale monolithic GaAs/Si test chip that integrates Si MOSFET circuits with diode lasers, LEDs, photoconductive detectors, and MESFET logic circuits fabricated in GaAs/AlGaAs layers grown by molecular beam epitaxy. Growth issues and processing considerations that affect device and circuit performance are addressed, and the characteristics of LEDs monolithically integrated with Si driver circuits and of GaAs microwave MESFETs fabricated on high-resistivity Si substrates are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Choi, H. K., Tsaur, B-Y., Metze, G. M., Turner, G. W., and Fan, J. C. C., IEEE Electron Device Lett. EDL–5, 207 (1984).Google Scholar
[2] Fischer, R., Henderson, T., Klem, J., Masselink, W. T., Kopp, W., and Morkoc, H., Electron. Lett. 20, 945 (1984).Google Scholar
[3] Choi, H. K., Turner, G. W., and Tsaur, B-Y., IEEE Electron Device Lett. EDL–7, 241 (1986).CrossRefGoogle Scholar
[4] H. Morkoç, Peng, C. K., Henderson, T., Kopp, W., and Fischer, R., IEEE Electron Device Lett. EDL–6, 381 (1985).Google Scholar
[5] Windhorn, T. H., Turner, G. W., and Metze, G. M., Mater. Res. Soc. Symp. Proc. 67, 157 (1986).Google Scholar
[6] Akiyama, M., Kawarada, Y., Nishi, S., Ueda, T., and Kaminishi, K., Ibid., p. 53.Google Scholar
[7] Deppe, D. G., Holonyak, N. Jr., Nam, D. W., Hsieh, K. C., Jackson, G. S., Matyi, R. J., Shichijo, H., Epler, J. E., and Chung, H. F., Appl. Phys. Lett. 51, 637 (1987).Google Scholar
[8] Chen, H. Z., Ghaffari, A., Wang, H., Morkoç, H., and Yariv, A., GaAs on Si Workshop, Marina Del Ray, CA, June 1987.Google Scholar
[9] Choi, H. K., Turner, G. W., and Tsaur, B-Y., Mater. Res. Soc. Symp. Proc. 91, 213 (1987).Google Scholar
[10] Choi, T.C K., Turner, G. W., and Tsaur, B-Y. (unpublished). The measured delay per stage was 220 ps at a power dissipation of 1 mW/stage.Google Scholar
[11] Statz, H., Newman, P., Smith, I. W., Pucel, R. A., and Haus, H. A., IEEE Trans. Electron Devices ED–34, 160 (1987).CrossRefGoogle Scholar
[12] Hamaguchi, H., Makiuchi, M., Kumai, T., and Wada, O., IEEE Electron Device Lett. EDL–8, 39 (1987).CrossRefGoogle Scholar
[13] Turner, G. W., Fall Meeting, The Metallurgical Society, Cincinnati, OH, October 1987.Google Scholar
[14] Fuβstetter, H., Wacker-Chemitronic (personal communication).Google Scholar
[15] Aksun, M. I. and Morkoç, H., IEEE Trans. Microwave Theory Tech. 36, 160 (1988).CrossRefGoogle Scholar
[16] Fischer, R., Henderson, T., Klem, J., Kopp, W., Peng, C. K., Morkoi, H., Gleason, K. R., and Scheitlin, D., IEEE Trans. Electron Devices ED–33, 206 (1986).Google Scholar
[17] Eron, M., Taylor, G., Menna, R., Narayan, S., and Klatskin, J., IEEE Electron Device Lett., EDL–8, 350 (1987).Google Scholar