Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:35:03.334Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of wafer bonding

Published online by Cambridge University Press:  21 March 2011

Kurt Scheerschmidt*
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle/Saale, Germany, [email protected]: +49-345-5582910, Fax: +49-345-5582917
Get access

Abstract

Molecular dynamics simulations using empirical potentials have been employed to describe atomic interactions at interfaces created by the macroscopic wafer bonding process. Investigating perfect or distorted surfaces of different semiconductor materials as well as of silica enables one to study the elementary processes and the resulting defects at the interfaces, and to characterize the ability of the potentials used. Twist rotation due to misalignment and bonding over steps influence strongly the bondability of larger areas. Empirical potentials developed by the bond order tight-binding approximation include ∏-bonds and yield enhanced interface structures, energies, and transferability to new materials systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tong, Q.-Y. and Gösele, U., Semiconductor wafer bonding: Science and technology. Wiley, New York 1999.Google Scholar
2. Plöβl, A. and Kräuter, G., Mater. Sci. Eng. R25, 1 (1999).Google Scholar
3. Goringe, C.M., Bowler, D.R., and Hernandez, E., Rep. Prog. Phys. 60, 1447 (1997).Google Scholar
4. Conrad, D. and Scheerschmidt, K., Phys. Rev. B58, 4538 (1998).Google Scholar
5. Pettifor, D. G. and Oleinik, I.I., Phys. Rev. B59, 8487 (1999).Google Scholar
6. Conrad, D., Scheerschmidt, K., and Gösele, U., Appl. Phys. A62, 7 (1996).Google Scholar
7. Conrad, D., Scheerschmidt, K., and Gösele, U., Appl. Phys. Lett. 71, 2307 (1997).Google Scholar
8. Belov, A.Y., Conrad, D., Scheerschmidt, K., and Gösele, U., Philos. Magazine A77, 55 (1998).Google Scholar
9. Belov, A.Y., Scheerschmidt, K., and Gösele, U., phys. status solidi 171, 159 (1999).Google Scholar
10. Belov, A.Y., Scholz, R., and Scheerschmidt, K., Philos. Mag. Lett. 79, 531 (1999).Google Scholar
11. Koitzsch, C., Conrad, D., Scheerschmidt, K., and Gösele, U., J. Appl. Phys. 88, 7104 (2000).Google Scholar
12. Tersoff, J., Phys. Rev. B38, 9902 and B39, 5566 (1989).Google Scholar
13. Conrad, D., Scheerschmidt, K., and Gösele, U., Appl. Phys. Lett. 71, 49 (2000).Google Scholar
14. Garofalini, S. H., Electrochem. Soc. Proc. 93–29, 57 (1994).Google Scholar
15. Timpel, D., Schaible, M., Scheerschmidt, K., Journ. Appl. Phys. 85, 2627 (1999).Google Scholar
16. Scheerschmidt, K., Conrad, D., Belov, A., Stenzel, H., Electrochem. Soc. Proc. 97–36, 381 (1998).Google Scholar
17. Stillinger, F.H. and Weber, T.A., Phys. Rev. B31, 5262 (1985).Google Scholar
18. Garofalini, S. H., J. Non-Cryst. Solids 120, 1 (1990).Google Scholar
19. Dyson, A.J. and Smith, P.V., Surface Science 355, 140 (1996).Google Scholar
20. Balamane, S., Halicioglu, T., Tiller, W.A., Phys. Rev. B46, 2250 (1992).Google Scholar
21. Baskes, M.I., Phys. Rev. B46, 2727 (1992).Google Scholar
22. Justo, J. F., Bazant, M.Z., Kaxiras, E., Bulatov, V.V., Yip, S., Phys. Rev. B58, 2539 (1998).Google Scholar
23. Wang, Y. C., Scheerschmidt, K., and Gösele, U., Phys. Rev. B 61, 12864 (2000).Google Scholar
24. Slater, J.C. and Koster, G.F., Phys. Rev. 94, 1498 (1954).Google Scholar
25. Pettifor, D.G., Phys. Rev. B63, 2480 (1989).Google Scholar
26. Rouviere, J.L., Rousseau, K., Fournel, F., and Moriceau, H., Appl. Phys. Lett. 77, 1135 (2000).Google Scholar