Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:30:24.481Z Has data issue: false hasContentIssue false

Modulation Doped Si/SiGe Heterostructures

Published online by Cambridge University Press:  22 February 2011

F. Schäffler
Affiliation:
Forschungsinstitut Ulm, D-7900 Ulm, FRG
Daimler-Benz AG
Affiliation:
Forschungsinstitut Ulm, D-7900 Ulm, FRG
Get access

Abstract

An overview of SiGe-based, modulation doped heterostructures is given. Strained layer handling, a prerequisite for realizing both n- and p-type devices, Is treated in terms of band engineering. The main emphasis is put on recent results obtained with high-electron mobility n-type Si/SiGe structures. Hall, Shubnikov-deHaas, and cyclotron resonance measurements are presented. The thermal stability of the heterostructures and the dopant distribution are treated with respect to device applications. Room temperature and 77K dc-measurements on very recent modulation doped field effect transistor (MODFET) implementations using implanted source/drain contacts are discussed. Device concepts with n- and p-type MODFETs combined in a superior complementary layout (CMODFET) are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jorke, H. and Herzog, H. -J., Proc. 1st Int. Symp. Si MBE (Bean, J.C., ed.) Proc. Vol.85–7, Electrochemical Society Pennington, New Jersey 1986, p.352 Google Scholar
[2] Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. -J., Phys. Rev. Lett. 64, 2441 (1985)Google Scholar
[3] see e. g. Kasper, E. and Sch, F.äffler in Semiconductors and Semlmetals Vol. 33, (Pearsall, T.P., vol. ed.), Academic Press, Boston 1990, chapter 4Google Scholar
[4] Van de Walle, C. G. and Martin, R. M., Phys. Rev. B34, 5621 (1986)Google Scholar
[5] Zeller, C. and Abstreiter, G., Z. Physik B64, 137 (1986)Google Scholar
]6] People, R., Bean, J. C., Lang, D. V., Sergent, A. M., Störmer, H. L., Wecht, K. W., Lynch, R. T., and Baldwin, K., Appl. Phys. Lett. 46, 1231 (1984)Google Scholar
[7] Wang, P. J., Meyerson, B. S., Fang, F. F., Nocera, J., and Parker, B., Appl. Phys. Lett. 56, 2333 (1989)CrossRefGoogle Scholar
[8] Ostrom, R. M., Allen, F. G., and Vasudev, P. K., Proc. 2nd Int. Symp. Si MBE, (Bean, J. C. and Schowalter, L. J., eds.) Proc. Vol. 88–8 Electrochemical Society Pennington, New Jersey 1988, p.85 Google Scholar
[9] Murakami, E., Etoh, H., Nakagawa, K., and Mlyao, M., Jap. J. Appl. Phys. 59, L1059 (1990)Google Scholar
[10] Kasper, E.. Surf. Sci. 174, 630 (1986)CrossRefGoogle Scholar
[11] Schäffler, F. and Jorke, H., Appl. Phys. Lett. 58, 397 (1991)CrossRefGoogle Scholar
[12] Schuberth, G., Besson, M., Abstreiter, G., Gornik, E., and Schäffler, F., Appl. Phys. Lett, (to be published)Google Scholar
[13] Gottinger, R., Gold, A., Abstreiter, G., Weimann, G., and Schlapp, W., Europhys. Lett. 6, 183 (1988)CrossRefGoogle Scholar
[14] Abstreiter, G., Kotthaus, J. P., Koch, J. F. and Dorda, G., Phys. Rev. B14, 2480 (1976)Google Scholar
[15] Pearsall, T. P. and Bean, J. C., IEEE Electr. Device. Lett. EDL–7, 308 (1986)Google Scholar
[16] Dämbkes, H., Herzog, H. -J., Jorke, H., Kibbel, H., and Kasper, E., IEDM Technical Digest, IEEE New York 1985, p.768 Google Scholar
[17] König, U. and Schäffler, F., Electronics Lett, (to be published)Google Scholar
[18] Schäffler, F., Herzog, H. -J., Jorke, H., and Kasper, E., J. Vac. Sci. Technol. 1991 (in the press)Google Scholar
[19] König, U., Kuisl, M., Schäffler, F., Fischer, G. and Kiss, T.. IEEE Electr. Device Lett. EDL–11, 218 (1990)Google Scholar