Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-04T22:39:44.275Z Has data issue: false hasContentIssue false

Modified Sol-Gel Synthesis of Vanadium Oxide Nanocomposites Containing Surfactant Ions

Published online by Cambridge University Press:  21 February 2011

Arthur Dobley
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
Peter Y. Zavalij
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
M. Stanley Whittingham
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
Get access

Abstract

Recently, there has been much interest in creating new layered transition metal oxides. Vanadium oxides may be used as sorbents, catalysts, and cathodes in lithium batteries. The modified sol-gel technique allows for some control towards the final structure of the compound. Using this technique, a new layered vanadium oxide compound - I, containing the surfactant dodecylphosphate, has been synthesized. After the removal of the organic ligand a new compound - II is formed which might be hexagonal. The compounds were analyzed using XRD, TGA, SEM, and NMR. VO2PO3(OH)C12H25(H2O)n is the general formula of the layered product I with a layer spacing of about 40 angstroms. II appears to be hexagonal with a = 43Å. The synthesis, composition, and structure of these compounds are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., J. Amer. Chem. Soc., 114, 10834 (1992).Google Scholar
2. Beck, J. S., Vartuli, J. C., Kennedy, G. J., Kresge, C. T., Roth, W. J., and Schramm, S. E., Chem. Mater., 6, 1816 (1994).Google Scholar
3. Huo, Q. S., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuff, F., and Stucky, G. D., Nature, 368, 317 (1994).Google Scholar
4. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Stucky, G. D., and etal, Chem. Mater., 6, 1176 (1994).Google Scholar
5. Zavalij, P. Y. and Whittingham, M. S., Acta Cryst., B55, 627 (1999).Google Scholar
6. Chirayil, T. A., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 10, 2629 (1998).Google Scholar
7. Janauer, G. G., Dobley, A., Guo, J., Zavalij, P., and Whittingham, M. S., Chem Mater, 8, 2096 (1996).Google Scholar
8. Janauer, G. G., Chen, R., Dobley, A. D., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Soc. Proc., 457, 533 (1997).Google Scholar
9. Janauer, G. G., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 9, 647 (1997).Google Scholar
10. Antonelli, D. M. and Ying, J. Y., Angew. Chem. Int. Ed. Engl., 34, 2014 (1995).Google Scholar
11. Turevskaya, E. P. and Turova, N. Y., Koord. Khim., 15, 373 (1989).Google Scholar