Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:12:05.322Z Has data issue: false hasContentIssue false

Microwave reflection study of ultra-high mobility GaAs/AlGaAs 2D-electron system at large filling factors

Published online by Cambridge University Press:  27 January 2014

Tianyu Ye
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
Ramesh Mani
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
Werner Wegscheider
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zurich, Switzerland.
Get access

Abstract

The microwave-induced magnetoresistance oscillations are exhibited by the GaAs/AlGaAs two dimensional electron system (2DES) under microwave and terahertz photo-excitation at liquid helium temperatures. Such oscillations are presently understood in terms of various theories. In order to identify the relative physical contributions, we have concurrently examined magnetotransport and microwave reflection from the 2DES. For the reflection measurements, a sensitive microwave detector was assimilated into the standard experimental setup. Here, we correlate changes in reflection with the concurrent transport response of the photo-excited 2DES.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V., Johnson, W. B., and Umansky, V., Nature 420, 646 (2002). R. G. Mani, Appl. Phys. Lett. 91, 132103(2007).CrossRefGoogle Scholar
Mani, R. G., Appl. Phys. Lett. 92, 102107 (2008).CrossRefGoogle Scholar
Durst, A. C., Sachdev, S., Read, N., and Girvin, S. M., Phys. Rev. Lett. 91, 086803 (2003).CrossRefGoogle Scholar
Lei, X. L. and Liu, S. Y., Phys. Rev. Lett. 91, 226805 (2003).CrossRefGoogle Scholar
Dmitriev, I. A., Vavilov, M. G., Aleiner, I. L., Mirlin, A. D., and Polyakov, D. G., Phys. Rev. B 71, 115316 (2005).CrossRefGoogle Scholar
Inarrea, J. and Platero, G., Phys. Rev. Lett. 94, 016806 (2005).CrossRefGoogle Scholar
Andreev, A. V., Aleiner, I. L., and Millis, A. J., Phys. Rev. Lett. 91, 056803 (2003). See also: R. G. Mani and A. Kriisa, Sci. Rep. 3, 3478 (2013) | doi:10.1038/srep03478 CrossRefGoogle Scholar
Mikhailov, S. A., Phys. Rev. B 83, 155303 (2011).CrossRefGoogle Scholar
Mani, R. G., Phys. Rev. B 72, 075327 (2005).CrossRefGoogle Scholar
Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V., Johnson, W. B., and Umansky, V., Phys. Rev. Lett. 92, 146801 (2004); Phys. Rev. B 69, 193304(2004). R. G. Mani, V. Narayanamurti, K. von Klitzing, J. H. Smet, W. B. Johnson, and V. Umansky, Phys. Rev. B 69, 161306 (2004); Phys. Rev. B 70, 155310 (2004).CrossRefGoogle Scholar
Mani, R. G., Gerl, C., Schmult, S., Wegscheider, W., and Umansky, V., Phys. Rev. B 81, 125320 (2010); R. G. Mani et al., Phys. Rev. B 87, 245308(2013); R. G. Mani et al., Phys. Rev. B 79, 205320 (2009); R. G. Mani, Intl. J. Mod. Phys. B 18, 3473 (2004); Sol. St. Comm. 144, 409 (2007)..CrossRefGoogle Scholar
Inarrea, J., Mani, R. G. and Wegscheider, W., Phys. Rev. B 82, 205321 (2010).CrossRefGoogle Scholar
Mani, R. G., Ramanayaka, A. N., Wegscheider, W., Phys. Rev. B 84, 085308 (2011); A. N. Ramanayaka, R. G. Mani, J. Inarrea, and W. Wegscheider, Phys. Rev. B 85, 205315(2012).CrossRefGoogle Scholar
Ye, T., Mani, R. G. and Wegscheider, W., Appl. Phys. Lett. 102, 242113 (2013).CrossRefGoogle Scholar
Ye, T., Mani, R. G. and Wegscheider, W., Appl. Phys. Lett. 103, 192106 (2013).CrossRefGoogle Scholar
Lei, X. L. and Liu, S. Y., Phys. Rev. B 72, 075345 (2005).CrossRefGoogle Scholar
Inarrea, J., Nano. Res. Lett. 8, 259 (2013).CrossRefGoogle Scholar