Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T17:22:40.022Z Has data issue: false hasContentIssue false

Microstructure and Lifetime Study of Al/Y Films

Published online by Cambridge University Press:  10 February 2011

L. Vedula
Affiliation:
Clemson University, Clemson, SC 29634
V. Pillai
Affiliation:
Clemson University, Clemson, SC 29634
V. S. Nimmagadda
Affiliation:
Clemson University, Clemson, SC 29634
R. Singh
Affiliation:
Clemson University, Clemson, SC 29634
K. F. Poole
Affiliation:
Clemson University, Clemson, SC 29634
H. Gao
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Thin Al films alloyed with three different compositions (0.1%, 1%, 5% by weight) of Yttrium were deposited by D.C. Magnetron Sputtering onto oxidized Si wafer substrates. The samples were furnace annealed at 425 °C for 30 minutes. Resistivity measured for the as-deposited and annealed Al(0. lwt% Y) were 3.07 and 2.57+/−0.25 μΩcm respectively. Al(0. lwt% Y) was also annealed by furnace annealing (FA), rapid thermal annealing (RTA) and rapid photothermal annealing (RPA). RPA gave a residual resistivity of 2.67μΩcm in 5 minutes and at a temperature of 350 C for Al(0. lwt% Y). Mean time to failure for AI(0. lwt% Y) samples at a current density of 3.2+/−0.5×106A/cm2 at 30 C was 50 hours. TEM results showed grain size variation from 0.5 to 2 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iyer, S. S. and Ting, C. Y., IEEE Trans. Electron Devices, 10, 1468 (1984).10.1109/T-ED.1984.21734Google Scholar
2. Cho, J. and Thompson, C. V., Appl. Phys. Lett. 54, 2577 (1989).Google Scholar
3. Dreyer, M. L., Fu, K. Y. and Varker, C. J., J. Appl. Phys, 73, 4894 (1993).Google Scholar
4. Sanchez, J. E., Kraft, O. and Arzt, E., Appl. Phys. Lett., 61 (26), 3121 (1992).Google Scholar
5. Singh, R., Nimmagadda, S. V., Parihar, V., Chen, Y. and Poole, K. F., IEEE Trans. Electron Devices, 45(3), 643(1998).Google Scholar
6. Takayama, S. and Tsutsui, N., J. Vac. Sci. Technol. B 14(5), 3257(1996)Google Scholar
7. Lee, Y. K., Fujimura, N., Ito, T. and Nishida, N., J. Vac. Sci. Technol. B 9(5), 2542(1991)Google Scholar
8. CRC Handbook of Chemistry and Physics, 78th edition, 19971998 Google Scholar
9. Li, Q., Johnson, E., Madsen, M. B., Johansen, A. and Kristensen, L. S., Phil. Mag. B, vol.66(4), 427(1992).Google Scholar
10. Singh, R., Alamgir, S. and Sharangpani, R., Appl. Phys. Lett., 67, 3939(1995)10.1063/1.114411Google Scholar
11. Menon, S. S., Kemp, K. G., and Poole, K. F., Proc. Southeastcon’91, 383Google Scholar
12. Singh, R. and Sharangapani, R., S. St. Tech., 193(1997)Google Scholar
13. Hu, C. K., Rodbell, K. P., Sullivan, T. D., Lee, K. Y. and Bouldin, D. P., IBM J. Res. Develop., vol.39, 465(1995).Google Scholar