Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:51:23.494Z Has data issue: false hasContentIssue false

Microscopic Driving Forces For Electromigration

Published online by Cambridge University Press:  15 February 2011

Richard S. Sorbello*
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
Get access

Abstract

Electromigration in metals is due to microscopic forces acting on mobile defects. These microscopic forces arise from the local electric field that accompanies electron transport, and the resulting defect migration is a consequence of the dynamic response of the defect to this local field. Theoretical results are given for the local electric field and the electromigration driving force on impurities in bulk systems and in metallic microstructures where surfaces, grain boundaries and dislocations play an important role. Extensions of the theory are described for mesoscopic systems, and local heating is shown to be an important effect as the size of the system becomes smaller and the electron current is larger.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huntington, H. B., in Diffusion in Solids, edited by Nowick, A. S. and Burton, J. J. (Academic, New York, 1975), p. 303.Google Scholar
2. Verbruggen, A. H., IBM J. Res. Dev. 32, 93 (1988).Google Scholar
3. Kwok, T. and Ho, P. S., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes Publications, Park Ridge, New Jersey, 1988), p. 369.Google Scholar
4. Sorbello, R. S., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J. R., Yost, F. G. and Ho, P. S. (Materials Research Society Symposium Proceedings Series, Vol.225) pp. 313.Google Scholar
5. Sorbello, R. S., J. Phys. Chem. Solids 34, 937 (1973).Google Scholar
6. Sorbello, R. S., J. Phys. Chem. Solids 42, 309 (1981).Google Scholar
7. van Ek, J. and Lodder, A., J. Phys: Condens. Matter 3, 7331 (1991); Defect and Diffusion Forum 115–116, 1 (1994).Google Scholar
8. Sorbello, R. S. and Dasgupta, B., Phys. Rev. B 16, 5193 (1977); Phys. Rev. B 21, 2196 (1980).Google Scholar
9. Landauer, R., IBM J. Res. Develop. 1, 223 (1957).Google Scholar
10. Landauer, R., Phys. Rev. B 14, 1474 (1976).Google Scholar
11. Bosvieux, C. and Friedel, J., J. Phys. Chem. Solids 23, 123 (1962).Google Scholar
12. Huntington, H. B. and Grone, A. R., J. Phys. Chem. Solids 20, 76 (1961).Google Scholar
13. Fiks, V. B., Fiz. Tverd. Tela (Leningrad) 1, 16 (1959) [Sov. Phys.-Solid State 1, 14 (1959)].Google Scholar
14. For a discussion and a list of references see Ref. 4.Google Scholar
15. Sorbello, R. S., Phys. Rev. B 31, 798 (1985).Google Scholar
16. Sorbello, R. S., Technical Report RL-TR-93–228 (Rome Laboratory, Air Force Materiel Command, Griffiss AFB, NY, 1993).Google Scholar
17. Kumar, P. and Sorbello, R. S., Thin Solid Films 25, 25 (1975).Google Scholar
18. Chu, C. S. and Sorbello, R. S., unpublished.Google Scholar
19. Ishida, H., Phys. Rev. B 49, 14610 (1994).Google Scholar
20. Yasunga, H. and Natori, A., Surf. Sci. Reports, 15, 208 (1992).Google Scholar
21. Chen, Z. and Sorbello, R. S., Phys. Rev. B 47, 13527 (1993).Google Scholar
22. Ralls, K. S., Ralph, D. C. and Buhrman, R. A., Phys. Rev. B 40, 11561 (1989).Google Scholar
23. Eigler, D. M., Lutz, C. P. and Rudge, W. E., Nature 352, 600 (1991).Google Scholar
24. Walkup, R. E., Newns, D. M. and Avouris, Ph., Phys. Rev. B 48, 1858(1993).Google Scholar
25. Sorbello, R. S., Phys. Rev. Lett. 63, 1815 (1989).Google Scholar