Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:35:12.713Z Has data issue: false hasContentIssue false

Microcrystalline Silicon Solar Cell Deposited Using Modified Very-High-Frequency Glow Discharge and Its Application in Multi-junction Structures

Published online by Cambridge University Press:  21 March 2011

Guozhen Yue
Affiliation:
United Solar Ovonic Corporation, 1100 West Maple Rd., Troy, MI 48084, U.S.A.
Baojie Yan
Affiliation:
United Solar Ovonic Corporation, 1100 West Maple Rd., Troy, MI 48084, U.S.A.
Jessica M. Owens
Affiliation:
United Solar Ovonic Corporation, 1100 West Maple Rd., Troy, MI 48084, U.S.A.
Jeffrey Yang
Affiliation:
United Solar Ovonic Corporation, 1100 West Maple Rd., Troy, MI 48084, U.S.A.
Subhendu Guha
Affiliation:
United Solar Ovonic Corporation, 1100 West Maple Rd., Troy, MI 48084, U.S.A.
Get access

Abstract

We have used the modified very-high-frequency glow discharge technique to deposit hydrogenated microcrystalline silicon (m c-Si:H) solar cells at high rates for use as the bottom cell in a multi-junction structure. We have investigated c-Si:H single-junction, a-Si:H/ c-Si:H double-junction, and a-Si:H/a-SiGe:H/m c-Si:H triple-junction solar cells and achieved initial active area efficiencies of 7.7%, 12.5%, and 12.4%, respectively. Issues related to improving material properties and device structures are addressed. By taking advantage of a lower degradation in m c-Si:H than a-Si:H and a-SiGe:H alloys, we have minimized the light induced effect in multi-junction structures by designing a bottom-cell-limited current mismatching. As a result, we have obtained a stable active-area cell efficiency of 11.2% with an a-Si:H/a-SiGe:H/μ c-Si:H triple-junction structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Fluckiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
2. Shah, A. V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Graf, U., Solar Energy Materials & Solar Cells 78, 469 (2003).Google Scholar
3. Kondo, M., Solar Energy Materials & Solar Cells 78, 543 (2003).Google Scholar
4. Rech, B., Muller, J., Repmann, T., Kluth, O., Roschek, T., Hupkes, J., Stiebig, H., Appenzeller, W., Mater. Res. Soc. Symp. Proc. 762, 285 (2003).Google Scholar
5. Yang, J., Yan, B., Smeets, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 664, A11.3 (2001).Google Scholar
6. Yan, B., Yue, G., Yang, J., Banerjee, A., and Guha, S., Mat. Res. Soc. Symp. Proc. 762, 309 (2003).Google Scholar
7. Finger, F., Klein, S., Dylla, T., Neto, A. L. Baia, Vetterl, O., and Carius, R., Mater. Res. Soc. Symp. Proc. 715, 123 (2002).Google Scholar
8. Yan, B., Yue, G., Yang, J., Guha, S., Williamson, D. L., Han, D., and Jiang, C.-S., Mater. Res. Soc. Symp. Proc. 808, A8.5 (2004) in press.Google Scholar
9. Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Hayashi, K., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Sasaki, T., and Tawada, Y., Proc. of 3rd World Conf. on Photovoltaic Energy Conversion (May, 2003, Osaka, Japan), in pressGoogle Scholar