Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T13:13:05.108Z Has data issue: false hasContentIssue false

MEMS Microresonators Based on Nanocrystalline Silicon

Published online by Cambridge University Press:  21 March 2011

J. Gaspar
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Dept. Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
T. Adrega
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Dept. Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
J. P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Dept. Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Get access

Abstract

This paper describes the fabrication and characterization of thin-film nanocrystalline silicon microresonators processed at temperatures below 110°C on glass substrates. The microelectromechanical structures consist of surface micromachined bridges of boron-doped hydrogenated nanocrystalline silicon (p+-nc-Si:H) deposited at 100°C by hot-wire chemical vapor deposition (HWCVD). The microbridges, which are suspended over an Al gate electrode, are electrostatically actuated and the mechanical resonance is detected in vacuum using an optical setup. The resonance frequency and energy dissipation in p+-nc-Si:H based resonators are studied as a function of the geometrical dimensions of the microstructures. Resonance frequencies between 700 kHz and 36 MHz and quality factors as high as 2000 are observed. A Young's modulus of 160 GPa for the structural bridge film is extracted from the experimental data using an electromechanical model and the main intrinsic energy dissipation mechanisms in nc-Si:H microresonators are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Judy, Jack W., Smart Mater. Struct. 10, pp. 11151134, 2001.Google Scholar
2.See for example, Maluf, N., An introduction to microelectromechanical systems engineering, Artech House, Boston, 2000.Google Scholar
3. Gaspar, J., Chu, V., Conde, J. P., J. Appl. Phys. 93, pp. 1001810029, 2003.Google Scholar
4. Gaspar, J., Chu, V., Louro, N., Cabeça, R., Conde, J. P., J. Non-Cryst. Solids, 299–302, pp. 12241228, 2002.Google Scholar
5. Gaspar, J., Chu, V., Conde, J. P., IEEE MEMS'2004 Tech. Dig., pp. 633636, in 2004.Google Scholar
6. Syllaios, A. J., Schimert, T. R., Gooch, R. W., McCarde, W. L., Ritchey, B. A., Tregilgas, J. H., Mat. Res. Soc. Symp. Proc. 609, pp. A14.4.1–A14.4.6, 2000.Google Scholar
7.See for example, Elwenspoeck, M., Wiegerink, R., Mechanical Microsensors, Springer, Berlin, 2001.Google Scholar
8.See for example, Cleland, A. N., Foundations of Nanomechanics, Springer, New York, 2002.Google Scholar
9. Gaspar, J., Chu, V., Conde, J. P., Appl. Phys. Lett. 84, pp. 622624, 2004.Google Scholar
10. Alpuim, P., Chu, V., Conde, J. P., J. Vac. Sci. Technol. A 21, pp. 10481054, 2003.Google Scholar
11. Alpuim, P., Chu, V., Conde, J. P., J. Appl. Phys. 86, pp. 38123821, 1999.Google Scholar
12. Yang, J., Ono, T., Esashi, M., J. Microelectromech. Syst. 11, pp. 775783, 2002.Google Scholar