Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:06:37.255Z Has data issue: false hasContentIssue false

Memory Retention Characteristics of Data Storage Area Written in Transition Metal Oxide Films by Using Atomic Force Microscope.

Published online by Cambridge University Press:  11 July 2011

K. Kinoshita
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori University Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
T. Yoda
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
S. Kishida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori University Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
Get access

Abstract

Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory (ReRAM) by providing a wide area filled with filaments, which can be regarded as one filament with large radius. We observed a C-AFM writing area of NiO films using SEM, and revealed a correlation between the contrast in a secondary electron image (SEI) and the resistance written by C-AFM. In addition, the dependence of the SEI contrast on the beam accelerating voltage (Vaccel) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effect of electron irradiation on the C-AFM writing area, it was shown that the resistance change effect was caused by exchanging oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low resistance and high resistance areas are, respectively, p-type Ni1+δO (δ < 0) and insulating (stoichiometric) or n-type Ni1+δO (δ ≥ 0).

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawai, M., Ito, K., Ichikawa, N., and Shimakawa, Y., Appl. Phys. Lett. 96, 072106 (2010).Google Scholar
2. Greene, P.D., Bush, E.L., and Rawlings, I.R., Proc. Symp. on Deposited Thin Film Dielectric Materials, edited by Vratny, F. (The Electrochemical Society, New York, 1969), pp. 167185.Google Scholar
3. Szot, K., Dittmann, R., Speier, W., and Waser, R., Phys. Status Solidi 1, R86 (2007)(RRL).Google Scholar
4. Lee, M-J., Han, S., Jeon, S-H., Park, B-H., Kang, S, Ahn, S-E., Kim, K-H., Lee, C-B., Kim, C-J., Yoo, I-K., Seo, D-H., Li, X-S., Park, J-B., Lee, J-H., and Park, Y., Nano Lett. 9, 1476 (2009).Google Scholar
5. Shima, H., Takano, F., Muramatsu, H., Yamazaki, M., Akinaga, H., and Kogure, A., Phys. Status Solidi 2, 99 (2008) (RRL).Google Scholar
6. Yoshida, C., Kinoshita, K., Yamasaki, T., and Sugiyama, Y., Appl. Phys. Lett. 93, 042106 (2008).Google Scholar
7. Kinoshita, K., Okutani, T., Tanaka, H., Hinoki, T., Yazawa, K., Ohmi, K., and Kishida, S., Appl. Phys. Lett. 96, 143505 (2010).Google Scholar
8. Kinoshita, K., Makino, T., Yoda, T., Dobashi, K., and Kishida, S., J. Mater. Res. 26, 45 (2011).Google Scholar
9. Sealy, C. P., Castell, M. R. and Wilshaw, P. R., J. Electron Microscopy 49(2), 311 (2000).Google Scholar
10. Perovic, D.D., Castell, M.R., Howie, A., Lavoie, C., Tiedje, T., and Cole, J.S.W., Ultramicroscopy 58, 104 (1995).Google Scholar
11. Venables, D., Jain, H., and Collins, D. C., J. Vac. Sci. Technol. B 16(1), 362 (1998).Google Scholar
12. Randolph, S. J., Fowlkes, J. D., and Rack, P. D., J. Appl. Phys. 98, 034902 (2005).Google Scholar
13. Rar, A. and Yoshitake, M., Jpn. J. Appl. Phys. 39, 4464 (2000).Google Scholar
14. Nonaka, H., Ichimura, S., Arai, K., and Gressus, C. L., Surf. Interface Anal. 16, 435 (1990).Google Scholar
15. Lee, M.-H., Song, S.-J., Kim, K.-M., Kim, G.-H., Seok, J.-Y., Yoon, J.-H., and Hwang, C.-S., Appl. Phys. Lett. 97, 062909 (2010).Google Scholar