Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T01:44:08.336Z Has data issue: false hasContentIssue false

Mechanical Performance of Tubular Microtruss Materials Reinforced With Nanocrystalline Sleeves

Published online by Cambridge University Press:  02 March 2011

Eral Bele
Affiliation:
University of Toronto, Department of Materials Science and Engineering 184 College Street, Toronto, Ontario, Canada, M5S3E4
Mishaal Azhar
Affiliation:
University of Toronto, Department of Materials Science and Engineering 184 College Street, Toronto, Ontario, Canada, M5S3E4
Glenn D. Hibbard
Affiliation:
University of Toronto, Department of Materials Science and Engineering 184 College Street, Toronto, Ontario, Canada, M5S3E4
Get access

Abstract

Microtruss cellular materials are assemblies of struts with characteristic features in the μm to mm scale, arranged in a periodic, three-dimensional architecture. Compared to conventional cellular architectures (e.g. stochastic foams and honeycombs), they can possess improved structural efficiency, because externally applied loads are resolved axially along the constituent struts. We have recently fabricated composite microtruss materials by electrodepositing reinforcing nanocrystalline sleeves on tubular polymeric scaffolds. These materials can offer enhanced structural performance by exploiting advantageous properties along three length scales: the inherent strength of the electrodeposited material (grain size reduction to the nm scale), its location away from the bending axis of the struts (cross-sectional efficiency in the μm scale), and the spatial arrangement of the struts (architectural efficiency in the mm scale). This study uses finite element analysis and experimental methods to characterize the mechanical properties of these composite materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashby, M. F., Phil. Mag. 85(26-27), 32353257 (2005)CrossRefGoogle Scholar
2.Wadley, H. N. G., Phil. Trans. Royal Soc. London A 364, 3168 (2006)Google Scholar
3.Bele, E., Bouwhuis, B. A., Hibbard, G. D., Acta Mater. 57(19), 59275935 (2009)CrossRefGoogle Scholar
4.Boonyongmaneerat, Y., Schuh, C. A., Dunand, D. C., Scripta Mater. 59(3), 336339 (2008)CrossRefGoogle Scholar
5.Bouwhuis, B. A, McCrea, J. L., PalumboJ. L., G. J. L., G., Hibbard, G. D., Acta Mater. 57(14), 40464053 (2009)CrossRefGoogle Scholar
6.Suralvo, M., Bouwhuis, B. A, McCrea, J. L., PalumboJ. L., G. J. L., G., Hibbard, G. D., Scripta Mater. 58(4), 247250 (2008)CrossRefGoogle Scholar
7.Gordon, L. M., A Bouwhuis, B., Suralvo, M., McCrea, J. L., PalumboJ. L., G. J. L., G., Hibbard, G. D., Acta Mater. 57(3), 932939 (2009)CrossRefGoogle Scholar
8.Queheillalt, D. T., Wadley, H. N. G., Acta Mater. 53(2), 303313 (2005)CrossRefGoogle Scholar
9.Erb, U. and El-Sherik, A. M., US Patent 5,353,266 (October 1994)Google Scholar
10.Erb, U., El-Sherik, A. M., Cheung, C. K. S., Aus, M. J., US Patent 5,433,797 (July 1995)Google Scholar
11.El-Sherik, A. M., Erb, U., Palumbo, G., Aust, K. T., Scripta Mater. 27(9), 11851188 (1992)CrossRefGoogle Scholar
12.El-Sherik, A. M., Erb, U., J. Mater. Sci. 30(22), 57435749 (1995)CrossRefGoogle Scholar
13.Krivetsky, A., J. Aeron. Sci. 22(6), 432435 (1955)Google Scholar
14.Gerard, G. and Becker, H., Handbook of Structural Stability. Part III, Buckling of Curved Plates and Shells, (NACA TN3783, 1957)CrossRefGoogle Scholar
15.Shanley, F. R., Strength of Materials, (McGraw-Hill, New York, 1957)Google Scholar