Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:12:31.717Z Has data issue: false hasContentIssue false

MBE Growth of GaAs on Porous Silicon

Published online by Cambridge University Press:  28 February 2011

T. L. Lin
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA
L. Sadwick
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA
K. L. Wang
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA
S. S. Rhee
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA
Y. C Kao
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles, CA
R. Hull
Affiliation:
Hewlett Packard Research Laboratory, Palo Alto, CA
C.W. Nieh
Affiliation:
California Institute of Technology, Pasadena, CA
D. N. Jamieson
Affiliation:
California Institute of Technology, Pasadena, CA
J. K. Liu
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA.
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA
Get access

Abstract

GaAs layers have been grown on porous silicon (PS) substrates by molecular beam epitaxyNo surface morphology deterioration was observed onGaAs-on-PS layers in spite of the roughness of PS. A 10% Rutherford backscattering spectroscopy (RBS) channeling minimum yield for GaAs-on-PS layers as compared to 16% for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy (TEM) reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Metze, G. M., Choi, H. K., and Tsaur, B-Y., Appl. Phys. Lett. 45, 1107 (1984).Google Scholar
2. Akiyama, M., Kawarada, Y., and Kaminish, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
3. Masselink, W. T., Henderson, T., Klem, J., Fisher, R., Pearah, P., Morkoc, H., Hafich, M., Wang, P. D., and Robinson, G. Y., Appl. Phys. Lett. 45, 1309 (1984).Google Scholar
4. Choi, H. K., Tuner, G. W., and Tsaur, B-Y., IEEE Electron Device Lett. EDL-7, 271 (1986).Google Scholar
5. Fisher, R., Neuman, D., Zabel, H., Morkoc, H., choi, C., and Otsuka, N., Appl. Phys. Lett. 48. 1223 (1986).Google Scholar
6. Luryi, S. and Suhir, E., Appl. Phys. Lett. 49, 140 (1986).Google Scholar
7. Unagami, T. and Seki, M., J. Electrochem. Soc. 125, 1339 (1978).Google Scholar
8. Lin, T. L. and wang, K. L., Appl. Phys. Lett. 49, 1104 (1987).Google Scholar
9. Grunthaner, P. J. and Grunthaner, F. J., to be published.Google Scholar