Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:21:27.162Z Has data issue: false hasContentIssue false

Liquid Injection MOCVD of Rare-Earth Oxides Using New Alkoxide Precursors

Published online by Cambridge University Press:  01 February 2011

Paul A. Williams
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK
Anthony C. Jones
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
Helen C. Aspinall
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
Jeffrey M. Gaskell
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
Paul R. Chalker
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool, L69 3BX, UK
Paul A. Marshall
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool, L69 3BX, UK
Yim F. Loo
Affiliation:
Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
Lesley M. Smith
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK
Get access

Abstract

High purity lanthanum oxide and praseodymium oxide thin films (C< 1 at.-%) have been deposited by liquid injection MOCVD using the volatile alkoxide precursos [La(mmp)3] and [Pr(mmp)3] in toluene-solution (mmp = OCMe2CH2OMe). 1H NMR solution studies have shown that the addition of donor species, such as tetraglyme (CH3O(CH2CH2O)4CH3) or mmpH prevent molecular aggregation and help stabilise the precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, Y. H., Yang, M.Y., Chin, A., Chen, W. J. and Kwei, C. M., IEEE Electron. Devices Lett., 21, 341 (2000).Google Scholar
2. Osten, H. J., Liu, J. P., Gaworzewski, P., Bugiel, E. and Zaumseil, P., IEDM Tech. Dig., 653 (2000).Google Scholar
3. Jones, A.C., J. Mater. Chem., 12, 2576 (2002).Google Scholar
4. Weber, A. and Suhr, H., Mod. Phys. Lett., B3, 1001 (1989).Google Scholar
5. Cabanas, M.V., Ragel, C.V., Conde, F., Gonzalez-Cabet, J. M. and Vallet-Regi, M., Solid State Ionics, 101–103, 191 (1997).Google Scholar
6. Lo Nigro, R., Toro, R., Malandrino, G, Raineri, V. and Fragalà, I. L, Electrochem. Soc. Proc., 2003–08, 915 (2003).Google Scholar
7. Herrmann, W. A., Huber, N. W. and Runte, O., Angew. Chem. Int. Ed Engl. 34, 2187 (1995).Google Scholar
8. Williams, P. A., Roberts, J. L., Jones, A. C., Chalker, P. R., Tobin, N. L., Bickley, J. F., Davies, H. O. and Leedham, T. J., Chem. Vap. Deposition, 8, 163 (2002) 9.Google Scholar
Aspinall, H. C., Gaskell, J., Williams, P. A., Jones, A.C., Chalker, P. R., Marshall, P. A., Smith, L. M. and Critchlow, G. W., Chem. Vap. Deposition, 9, no. 5, 235 (2003).Google Scholar
10. Aspinall, H. C., Gaskell, J., Williams, P. A., Jones, A. C., Chalker, P. R., Marshall, P. A., Smith, L. M. and Critchlow, G. W., Chem. Vap. Deposition, in press.Google Scholar
11. Jones, A. C., Leedham, T. J., Wright, P. J., Crosbie, M. J., Lane, P. A., Williams, D. J., Fleeting, K. A., Otway, D. J. and O'Brien, P., Chem. Vap. Deposition, 4, 46 (1998).Google Scholar
12. Daniele, S., Hubert-Pfalzgraf, L. G., Hitchcock, P. B. and Lappert, M. F., Inorg. Chem. Commun., 3, 218 (2000)Google Scholar