Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:09:56.247Z Has data issue: false hasContentIssue false

Kinetics Of Charge Generation During Formation Of Hf And Zr Silicate Dielectrics

Published online by Cambridge University Press:  01 February 2011

Theodosia Gougousi
Affiliation:
Dept. of Chemical Engineering, NC State University, Raleigh, NC 27695, U.S.A.
M. Jason Kelly
Affiliation:
Dept. of Chemical Engineering, NC State University, Raleigh, NC 27695, U.S.A.
Gregory N. Parsons
Affiliation:
Dept. of Chemical Engineering, NC State University, Raleigh, NC 27695, U.S.A.
Get access

Abstract

Understanding charged defects in high dielectric constant insulators is a critical challenge for advanced devices. We have formed thin Zr and Hf silicates by oxidation of thin metal films sputtered on clean Si(100) and studied the effect of oxidation time (15 to 300s) and temperature (600 or 900°C) on the flatband voltage using capacitance vs. voltage measurements. We find that the thermal budget during oxidation and the type of oxidizing agent (slow vs. fast) affect the amount of fixed charge in the film significantly. Oxidation of 0.8nm of Zr metal on Si at 600°C in N2O for 15s results in EOT=1.2nm and a shift in the flatband voltage by ∼-0.2V indicating generation of positive fixed charge. Oxidation of similar films for 300s result in EOT=2.8nm and shift of the flatband voltage by ∼-0.95V. Hf films oxidized in N2O also show increased concentrations of fixed charge for longer oxidation times. By comparison, Si oxidized in the same environment does not show this extent of flatband voltage shift. A significantly reduced charge generation rate is observed for Hf oxidation under low O2 partial pressure. Extended oxidations (up to 1h) result in increased EOT and a slight decrease in the charged defect state density. Forming Gas Anneal (FGA) results in partial neutralization of the charge. FGA after the Al gate deposition also leads to significant decrease of the EOT (from 2.7 to 2.1nm) indicating significant reaction of the film with the gate metal. X-ray photoelectron spectroscopy for thin films indicates formation of Zr and Hf-silicates. However, for thick Hf films the low O2 oxidation process results in less silicon incorporation in the film as compared to films oxidized in N2O. Results suggest that understanding oxidation mechanisms will be important in isolating andcontrollingfixedchargeinhigh-kdielectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G.D., Wallace, R.M. and Anthony, J.M., J. Appl. Phys. 89 (10), 5243 (2001) and references therein.Google Scholar
2 Copel, M., Cartier, E., and Ross, F. M., Appl. Phys. Lett. 78 (11), 1607 (2001)Google Scholar
3 Niu, D., Ashcraft, R.W., Kelly, M.J., Chambers, J.J., Klein, T.M., and Parsons, G.N., J. Appl. Phys. 91 (9) (2002)Google Scholar
4 Chambers, J.J. and Parsons, G.N., J. Appl. Phys. 90 (2), 918 (2001)Google Scholar
5 Lee, B. H., Kang, L., Nieh, R. Qi, W. J., and Lee, J. C., Appl. Phys. Lett. 76 (14), 1926 (2000)Google Scholar
6 Yang, N., Henson, K. W., Hauser, J. R., and Wortman, J. J., IEEE Trans. Electron Devices 46, 1464 (1999)Google Scholar
7 Hoshino, Y., Kido, Y., Yamamoto, K., Hayashi, S., and Niwa, M., Appl. Phys. Lett. 81 (14) 2659 (2002)Google Scholar
8 Kirsch, P. D., Kang, C. S., Lozano, J., Lee, J. C., and Ekerdt, J. G., J. Appl. Phys. 91 (7), 4353 (2002)Google Scholar
9 Opila, R. L., Wilk, G. D., Alam, M. A., Dover, R. B. van, and Busch, B. W., Appl. Phys. Lett. 81 (10), 1788 (2002)Google Scholar
10 Houssa, M., Afanas'ev, V. V., Stesmans, A., and Heyns, M. M., Appl. Phys. Lett. 77 (12), 1885 (2000)Google Scholar
11 Gougousi, T., and Parsons, G. N., in preparation.Google Scholar
12 Rangarajan, V., Bhandari, H., and Klein, T. M., Thin Sol. Films, 419, 1 (2002)Google Scholar