Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T14:18:01.608Z Has data issue: false hasContentIssue false

Isotropic Lateral Ordering of III-V Quantum Dots Over GaAs (001) By Self-Assembly

Published online by Cambridge University Press:  01 February 2011

Mohammad Lutfi Hussein
Affiliation:
[email protected], University of Arkansas, Microelectronics-Photonics, 1309 Pine Creek, Fayetteville, AR, 72704, United States, (501) 442-1800
Euclydes Marega
Affiliation:
[email protected], University of Arkansas, Microelectronics-Photonics, Fayetteville, AR, 72701, United States
Gregory Salamo
Affiliation:
[email protected], University of Arkansas, Microelectronics-Photonics, Fayetteville, AR, 72701, United States
Get access

Abstract

Lateral ordering of InGaAs quantum dots over GaAs (001) has been achieved in earlier reports resembling anisotropic pattern. We present in this letter a method of breaking the anisotropy of ordered QDs by changing the growth environment. We do show experimentally that using As2 molecules instead of As4 as a background flux is effective in controlling the diffusion of Ga adatoms in away to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). Our results are consistent with reported experimental and theoretical studies on surface structure and diffusion mechanism over GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimbreg, D., Gruandmann, M., and ledentsov, N., Quantum Dot Hetero-structures (Wiley, Chichester, 1999) pp.1055.Google Scholar
2. Phillips, J., J. Appl. Phys. 91, 4590 (2002).Google Scholar
3. Leonard, D., Krishnamorthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
4. Lee, H., Johnson, J. A., Speck, J. S., and Petroff, P. M., J. Vac. Sci. Technol. B 18, 2193 (2000).Google Scholar
5. Nakamura, Y., Schmidt, O. G., Jin-Phillipp, N. Y., Kiravittaya, S., Muller, C., Eberl, K., Grabeldinger, H., and Schwizer, H., J. Crystal. Growth 242, 339 (2002).Google Scholar
6. Hyon, C. K., Choi, S. C., Song, S. H., Hwang, S. W., Son, M. H., Ahn, D., Park, Y. J., and Kim, E. K., Appl. Phys. Lett. 77, 2607 (2000).Google Scholar
7. Mazur, Y. I., Ma, W. Q., Wang, X., Wang, Z. M., Salamo, G. J., and Xiao, M., Appl. Phys. Lett. 83, 987 (2003).Google Scholar
8. Ma, W. Q., Hussein, M. L., Shultz, J. L., and Salamo, G. J., Phys. Rev. B 69, 233312 (2004).Google Scholar
9. Wang, Z. M., Churchil, H., George, C. E., and Salamo, G. J., J. Appl. Phys. 96, 6908 (2004).Google Scholar
10. Chen, W., Shin, B., Goldman, R. S., Stiff, A., and Bhattacharya, P. K., J. Vac. Sci. Technol. B 21, 1920 (2003).Google Scholar
11. Solomon, G. S., Appl. Phys. Lett. 84, 2073 (2004).Google Scholar
12. Wang, Zh. M., Seydmohamadi, Sh., Lee, J. H., and Salamo, G. J., Appl. Phys. Lett. 85, 5031 (2004).Google Scholar
13. Morgan, C.G., Kratzer, P., and Scheffler, M., Phys. Rev. Lett. 82, 4886 (1999).Google Scholar
14. Granados, D., and Garcia, J. M., Appl. Phys. Lett. 82, 2401 (2003).Google Scholar
15. Ogura, T., Kishimoto, D. and Nishinaga, T., J. Crystal. Growth 226, 179 (2001).Google Scholar
16. Sugaya, T., Komori, K., Yamauchi, S., and Amano, T., J. Vac. Sci. Technol. B 23, 1243 (2005).Google Scholar
17. Li, H., Zhuang, Q., Wang, Z., and Race, T. D., J. Appl. Phys. 87, 188 (2000).Google Scholar
18. Solomon, G. S., Appl. Phys. Lett. 66, 991 (1994).Google Scholar