Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T04:19:37.943Z Has data issue: false hasContentIssue false

Investigation of Local Coordination and Electronic Structure of Dielectric Thin Films from Theoretical Energy-Loss Spectra

Published online by Cambridge University Press:  01 February 2011

Manish K. Singh
Affiliation:
[email protected], University of Illinois at Chicago, Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Javier Rosado
Affiliation:
[email protected], University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Rajesh Katamreddy
Affiliation:
[email protected], University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Anand Deshpande
Affiliation:
[email protected], University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Christos G. Takoudis
Affiliation:
[email protected], University of Illinois at Chicago, Department of Bioengineering, 851 S Morgan St, Chicago, IL, 60607, United States
Get access

Abstract

Quantum mechanical simulations were performed to calculate the valence electron energy-loss spectra (VEELS) for hafnium oxide, hafnium silicate, silicon oxide and silicon systems using the full potential Linearized Augmented Plane Wave (LAPW) formalism within the Density Functional Theory (DFT) framework. The needed energy-loss function (ELF) was derived from the calculation of the complex dielectric tensor within the random phase approximation (RPA). The calculated spectra were compared with experimental scanning transmission electron microscopy (STEM)/EELS of atomic layer deposited (ALD) HfO2 on Si(100) to evaluate their use as a “fingerprint” method that can be used to distinguish among various polymorphs of HfO2 thin films and relate the fine structure to the electronic structure and local bonding environment. Calculated low-loss spectra are found to be in satisfactory agreement with experimental data. Also, the combination of such theoretical calculations and experimental data could be of key importance in our understanding of fundamental issues of these systems. Compared to energy-loss near edge structure (ELNES) or core energy-loss spectra, the ELF calculated for low-loss spectra is computationally less expensive and can prove useful for prompt analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89 (10), 5243 (2001).Google Scholar
2. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York 1996).Google Scholar
3. Pennycook, S. J., Jesson, D. E., McGibbon, A. J., and Nellist, P. D., J. Electron Microsc. (Tokyo) 45 (1), 36 (1996).Google Scholar
4. Pennycook, S. J., Browning, N. D., McGibbon, M. M., McGibbon, A. J., Jesson, D. E. and Chisholm, M. F. Phil. Trans. R. Soc. A 354 (1719), 2619 (1996)Google Scholar
5. Erni, R. and Browning, N. D., Ultramicroscopy 104 (3-4) 176 (2005).Google Scholar
6. Deshpande, A., Inman, R., Jursich, G. and Takoudis, C. G., J. Vac. Sci. & Technol. A, 22 (5), 2035 (2004).Google Scholar
7. Deshpande, A., Inman, R., Jursich, G. and Takoudis, C. G., J. Appl. Phys. 99 (9), 094102 (2006).Google Scholar
8. James, E.M. and Browning, N.D., Ultramicroscopy 78 (1-4), 125 (1999).Google Scholar
9. James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Electron Microsc. (Tokyo), 47 (6), 561 (1998).Google Scholar
10. Browning, N. D., Chisholm, M. F. and Pennycook, S. J., Nature 366 (6451), 143 (1993).Google Scholar
11. Jesson, D. E. and Pennycook, S. J. Proc. R. Soc. London, Ser. A 449, 273 (1995).Google Scholar
12. Ashcroft, N. W. and Mermin, N. D., Solid State Physics, (Thomson Learning, Toronto, 1976).Google Scholar
13. Blaha, Peter, Schwarz, Karlheinz, Madsen, Georg K. H., Dieter Kvasnicka and Joachim Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2002, Techn. Universität Wien, Austria. Google Scholar
14. Ambrosch-Draxl, C. and Sofo, J.O., Los Alamos National Laboratory, Preprint Archive, Condensed Matter, arXiv:cond-mat/0402523 1 (2004).Google Scholar
15. Ambrosch-Draxl, C. and Sofo, J.O., Comput. Phys. Commun. 175 (1), 1 (2006).Google Scholar
16. Ikarashi, N. and Manabe, K., J. Appl. Phys. 94 (1), 480 (2003).Google Scholar
17. Jin, H., Oh, S. K., Kang, H. J. and Tougaard, S., J. Appl. Phys. 100, 083713 (2006).Google Scholar