Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:39:59.808Z Has data issue: false hasContentIssue false

Interpretation of Aerogel Shrinkage During Drying.

Published online by Cambridge University Press:  25 February 2011

Bharath Rangarajan
Affiliation:
Department of Chemical Engineering, Michigan State University, East Lansing, MI 48824, USA.
Carl T. Lira
Affiliation:
Department of Chemical Engineering, Michigan State University, East Lansing, MI 48824, USA.
Get access

Abstract

A variety of silica aerogels have been prepared by the hydrolysis of TEOS, and dried using supercritical CO2. The shrinkage which occurs during the drying process is dependent on the gel formulation and the extent of aging of the gels in their pore liquor. Such aging normally results in an increased density, modulus and pore size of wet gels. Upon drying the corresponding aerogels show the opposite behavior for modulus and density, which decrease with the extent of aging. Both drying and aging shrinkage were not observed for base-catalyzed gels, and were very small for HF-catalyzed gels. The use of formamide resulted in reduced drying shrinkage and a slightly larger amount of syneresis. Drying shrinkage is associated with the presence of micropores. Shrinkage during drying has been observed using a high pressure view cell and it was found that most of the shrinkage occurred during depressurization. An explanation consistent with the above is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. First, Second and Third International Symposium on Aerogels, ed Fricke, J., Wurzburg, Germany (1986), eds Vacher, R., Phalippou, J., Pelous, J., Woignier, T., France, (1986), eds Vacher R., Phalippou J., Pelous J., Woignier T., Montpellier, France, (1988), ed J. Fricke, Wurzburg, Germany (1990).Google Scholar
2. Fricke, J., in Aerogels, ed. Fricke, J., Springer Verlag, Berlin, 1, (1986).Google Scholar
3. Hdach, H., Woignier, T., Phalippou, J., Scherer, G. W., J. Non Cryst. Solids, 121, 202, (1990).Google Scholar
4. Mulder, C. A. M., van Lierop, J. G., in Aerogels, ed. Fricke, J., Springer Verlag, Berlin, 68 (1986).Google Scholar
5. Boyde, A., Bailey, E., Jones, S.J., Tamarin, A., IITRI/SEM, Vol. l.,. 507, (1977).Google Scholar
6. Rangarajan, B., Lira, C. T., J. Supercritical Fluids, 4–1, 1,(1991).Google Scholar
7. Rangarajan, B., Lira, C. T., J. Non-cryst. Solids, 136, 111, (1991).Google Scholar
8. Woignier, T., Phalippou, J., Hdach, H., Scherer, GW, in Better Ceramics Through Chemistry IV, eds. Zelinsky, B. J. J., Blinker, C. J., Clark, D. E., Ulrich, D. R., 1087, (1990).Google Scholar
9. Scherer, G. W., to be published in J. Non-cryst. Solids, (1992).Google Scholar
10. Pauthe, M., Quinson, J. F., Hdach, H., Woignier, T., Phalippou, J., Scherer, G., J. Non Cryst. Solids, 130, 1,(1991).Google Scholar
11. Scherer, G. W., to be published in J. Non-cryst. Solids, (1992).Google Scholar
12. Gronauer, M., Kadur, A., Fricke, J., in Aerogels, ed. Fricke, J., Springer Verlag, Berlin, 167, (1986).CrossRefGoogle Scholar
13. Woignier, T., Phalippou, J., Vacher, R., in Better Ceramics Through Chemistry III, eds. Brinker, C. J., Clark, D. E., Ulrich, D.R., 697, (1988).Google Scholar
14. Scherer, G. W., J. Non-cryst. Solids, 109, 183, (1989).Google Scholar
15. Scherer, G. W., Pardenek, S. A., Swiatek, R. M., J. Non-cryst. Solids, 107 [1]. 14, (1988).Google Scholar
16. Scherer, G. W., in Better Ceramics Through Chemistry III, eds. Brinker, C. J., Clark, D. E., Ulrich, D. R., 179,(1988).Google Scholar
17. Iier, R K, The Chemistry of Silica, Wiley, New York, (1979).Google Scholar
18. Dumas, J., Quinson, J. F., Serughetti, J., J. Non Cryst. Solids, 125, 244, (1990).Google Scholar
19. Hench, L. L. in Science of Ceramic Chemical Processing, eds. Hench, L. L., Ulrich, D. R., Wiley, New York, 52, (1986).Google Scholar
20. Brinker, C. J., Scherer, G. W., in Sol-Gel Science, Academic Press, San Francisco, (1990).Google Scholar
21. Scherer, G. W., Swiatek, R. M., J. Non-cryst. Solids, 113, 119, (1989).CrossRefGoogle Scholar
22. The Properties of Gases and Liquids', 4th edition, Reid, R. C., Prausnitz, J. M., and Poling, B. E., McGraw Hill, 607, (1987).Google Scholar
23. Mavrovouniotis, G. M., Brenner, H., J. Colloid Interface Sci, 124, 269, (1988).Google Scholar
24. The Dynamical Character of Adsorption', de Boer, J. H., Clarendon Press, Oxford, 37, (1953).Google Scholar
25. Israelchvili, J. N., Chem. Scr., 25, 7, (1985).Google Scholar
26. Snook, I. K., van Megan, W., J. Chem. Soc, Faraday Trans. 2, 77, 181, (1981).Google Scholar
27. van Megan, W., Snook, I. K., J. Chem. Soc, Faraday Trans. 2, 75, 1095, (1979).Google Scholar
28. Ash, S. G., Everett, D. H., Radke, C., J. Chem. Soc., Faraday Trans. 2, 69, 1256, (1973).Google Scholar
29. Strubinger, J. R., Parcher, J. F., Anal. Chem, 61, 951, (1989).Google Scholar
30. Serda, P. J., Feldman, R. F., in The Solid Gas Interface vol 2, ed Flood, E. A., Marcel Dekker Inc, New York, 729, (1967).Google Scholar
31. Flood, E. A., Heyding, R. P., Can. J. Chem., 32, 660, (1954).CrossRefGoogle Scholar
32. Nakamura, K., Hoshino, T., Ariyama, H., in Proceedings of the 2nd International Symposium on Supercritical Fluids, ed McHugh, M. A., John Hopkins University, Baltimore, Maryland, 185, (1991).Google Scholar