Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:32:48.693Z Has data issue: false hasContentIssue false

Intermediate Layers for Thin-Film Polycrystalline Silicon Solar Cells on Glass Formed by Diode Laser Crystallization

Published online by Cambridge University Press:  18 May 2012

Jonathon Dore
Affiliation:
University of New South Wales, Kensington, NSW, 2051 Australia. Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Rhett Evans
Affiliation:
Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Bonne D. Eggleston
Affiliation:
University of New South Wales, Kensington, NSW, 2051 Australia. Suntech R&D Australia Pty Ltd, 82 Bay St, Botany, NSW, 2019 Australia.
Sergey Varlamov
Affiliation:
University of New South Wales, Kensington, NSW, 2051 Australia.
Martin A. Green
Affiliation:
University of New South Wales, Kensington, NSW, 2051 Australia.
Get access

Abstract

Intermediate layers between silicon and borosilicate glass are investigated for compatibility with a diode laser crystallization technique for fabrication of thin-film polycrystalline silicon solar cells. SiCx, SiNx and SiOx layers or multilayer stacks of these materials have allowed silicon films of 10μm thickness to be successfully crystallized by diode laser irradiation without dewetting, with each option offering different advantages. SiCx allows the most robust crystallization process, while SiOx is the best barrier to contamination and the most stable layer. SiNx offers the best anti-reflection coating for superstrate configured solar cells. Presently, best device performance is achieved with a SiOxintermediate layer with cells achieving up to ∼540 mV open-circuit voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Keevers, M. J., Young, T. L., Schubert, U. and Green, M. A., in 22nd European PVSEC, Milan (2007), pp. 17831790.Google Scholar
Qiu, Y., Kunz, O., Venkatachalam, S., Van Gestel, D., Egan, R., Gordon, I. and Poortmans, J., in 25th European PVSEC, Valencia (2010), pp. 36333637.Google Scholar
Brendel, R. and Goetzberger, A., Thin-Film Crystalline Silicon Solar Cells: Physics and Technology, Wiley-VCH, Weinheim (2003), pp. 92107.CrossRefGoogle Scholar
Andrä, G., Plentz, J., Gawlik, A., Ose, E., Falk, F. and Lauer, K., in 22nd European PVSEC, Milan (2007), pp. 19671970.Google Scholar
Van Gestel, D., Chahal, M., Van Der Wilt, P. C., Qiu, Y., Gordon, I., Im, J. S. and Poortmans, J., in 35th IEEE PVSC, Honolulu (2010), pp. 279282.Google Scholar
Schneider, J., Dore, J., Christiansen, S., Falk, F., Lichtenstein, N., Valk, B., Lewandowska, R., Slaoui, A., Maeder, X., Lábár, J., Sáfrán, G., Werner, M., Naumann, V. and Hagendorf, C., in 25th European PVSEC, Valencia (2010), pp. 35733576.Google Scholar
Amkreutz, D., Müller, J., Schmidt, M., Hänel, T. and Schulze, T. F., Prog Photovoltaics Res Appl, 19, (8), pp. 937945, (2011).CrossRefGoogle Scholar
Eggleston, B. D., Dore, J., Huang, J. L., Varlamov, S. and Green, M. A., presented at Mater Res Soc Symp, San Francisco (to be published, 2012).Google Scholar
Li, J. G. and Hausner, H., Mater Lett, 14, (5-6), pp. 329332, (1992).CrossRefGoogle Scholar
Davis, J. R., Rohatgi, A., Hopkins, R. H., Blais, P. D., Rai-Choudhury, P., McCormick, J. R. and Mollenkopf, H. C., IEEE Trans. Electron Devices, 27, (4), pp. 677687, (1980).CrossRefGoogle Scholar
Janz, S., Reber, S. and Glunz, S. W., in 21st European PVSEC, Dresden (2006), pp. 660663.Google Scholar
Green, M. A., Appl. Phys. A, 96, (1), pp. 153159, (2009).CrossRefGoogle Scholar