Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:22:03.508Z Has data issue: false hasContentIssue false

Interface Characterization of Metals and Metal-nitrides to Phase Change Materials

Published online by Cambridge University Press:  28 June 2011

Deepu Roy
Affiliation:
NXP Semiconductors, High Tech Campus 4, 5656AE, Eindhoven, The Netherlands E-mail: [email protected], phone: +31(0)402726872.
Dirk J. Gravesteijn
Affiliation:
NXP Semiconductors, High Tech Campus 4, 5656AE, Eindhoven, The Netherlands E-mail: [email protected], phone: +31(0)402726872.
Rob A. M. Wolters
Affiliation:
NXP Semiconductors, High Tech Campus 4, 5656AE, Eindhoven, The Netherlands E-mail: [email protected], phone: +31(0)402726872. MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
Get access

Abstract

We have investigated the interfacial contact properties of the CMOS compatible electrode materials W, TiW, Ta, TaN and TiN to doped-Sb2Te phase change material (PCM). This interface is characterized both in the amorphous and in the crystalline state of the doped-Sb2Te. The electrical nature of the interface is characterized by contact resistance measurements and is expressed in terms of specific interfacial contact resistance (ρC). These measurements are performed on four-terminal Kelvin Resistor test structures. Knowledge of the ρC is useful for selection of the electrode in the integration and optimization of the phase change memory cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Attenborough, K., Hurkx, G., Delhougne, R., Perez, J., Wang, M., Ong, T., Tran, L., Roy, D., Gravesteijn, D., and van Duuren, M., IEDM Tech. Dig., 648651(2010).Google Scholar
2. Roy, D., in‘t Zandt, M. A.A., and Wolters, Rob A.M., IEEE Electron Device Lett., 31(11), 12931295 (2010).Google Scholar
3. Proctor, S.J and Linholm, L.W, IEEE Electron Device Lett., 3(10), 294296 (1982).Google Scholar
4. Stavitski, N., Klootwijk, J. H., Van Zeijl, H. W., Kovalgin, A. Y. and Wolters, R. A. M., IEEE Trans. Semiconductor manufacturing, 22(1), 146152 (2009).Google Scholar
5. Yu, A. Y. C., Solid-state Elect. 13, 239247(1970)Google Scholar
6. Padovani, F. A. and Saratton, R., Solid-state Elect. 9, 695707(1966)Google Scholar
7. Schroder, D. K., Semiconductor material and device characterization, 3nd Edition, Wiley- Interscience (2006) ch. 3 Google Scholar
8. Yokota, R., Jap. J. Appl. Phys., 28(8) 14071411(1989)Google Scholar
9. Ryu, S. W., Ho Lee, J., Ahn, Y. B., Kim, Choon H., Yang, B. S., Kim, G. H., Kim, S. G., Lee, Se-Ho, Hwang, C. S., and Kim, H. J., Appl. Phys. Lett., 95, 112110 (2009)Google Scholar
10. Male, J. C., Brit. J. Appl. Phys., 18, 15431549 (1967)Google Scholar
11. Raoux, S. and Wuttig, M., Phase change materials: Science and application, Springer Verlag (2009) ch 9 Google Scholar
12. Ielmini, D., Zhang, Y., J. Appl. Phys. 102, 054517 (2007)Google Scholar
13. Thomas, C. B., J. Phys. D: Appl. Phys., 9, 25872596 (1976)Google Scholar
14. Sze, S.M, Physics of semiconductor devices, 2nd Edition, Wiley-Interscience, New York (1981) ch. 5.Google Scholar