Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:27:01.635Z Has data issue: false hasContentIssue false

In-Situ Processing of Si Film Structures in a Rapid Thermal Chemical Vapor Deposition Reactor

Published online by Cambridge University Press:  21 February 2011

M. L. Green
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
D. Brasen
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
H. Luftman
Affiliation:
AT&T Solid State Technology Center, Breinigsville, Pa. 18031
T. Boone
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
K. Krisch
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
Get access

Abstract

Although the benefits of in-situ processing seem intuitively obvious as higher yield due to particle and contamination control, there is presently little data to support these claims. However, materials characterization data on in-situ grown films suggest that it will be advantageous. In this paper we explore the advantages of in-situ processing in a load-locked rapid thermal chemical vapor deposition (RTCVD) chamber for such processes as cleaning, epitaxial growth, oxidation and polysilicon growth. The cold wall nature and low thermal mass of the RTCVD chamber make it an ideal candidate for a cluster module for thermal processing in an integrated process tool.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Hendriks, M., Werkhoven, C. J., Huussen, F. and Granneman, E. H. A., in Single Chamber Processing, edited by Nissim, Y. I. and Katz, A., (North Holland, Amsterdam, 1993), p. 79.Google Scholar
2) Green, M. L., Brasen, D., Luftman, H. and Kannan, V. C., J. Appl. Phys. 65, 2558, (1989).CrossRefGoogle Scholar
3) Green, M. L., Weir, B. E., Brasen, D., Hsieh, Y. F., Higashi, G., Feygenson, A., Feldman, L. C. and Headrick, R. L., J. Appl. Phys. 69, 745, (1991).Google Scholar
4) EerNisse, E. P., Appl. Phys. Lett. 35, 8, (1979).CrossRefGoogle Scholar
5) Deal, B. E., Sklar, M., Grove, A. S. and Snow, E. H., J. Electrochem. Soc., 114, 266, (1967).CrossRefGoogle Scholar
6) Higashi, G. S., Bean, J. C., Buescher, C., Yadvish, R. and Temkin, H., Appl. Phys. Lett. 56, 2560, (1990).CrossRefGoogle Scholar
7) Murali, V., Wu, A. T., Dass, L., Frost, M. R., Fraser, D. B., Liao, J. and Crowley, J., J. Electronic Mat., 18, 731, (1989).CrossRefGoogle Scholar
8) Sturm, J. C., Gronet, C. M., King, C. A., Wilson, S. D. and Gibbons, J. F., IEEE Electron Device Lett., EDL–7, 577, (1986).Google Scholar