Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:25:01.102Z Has data issue: false hasContentIssue false

Initial Interaction of Crystalline Al/Amorphous Si Bilayer during Annealing

Published online by Cambridge University Press:  21 March 2011

Yonghao Zhao
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstr. 3, D-70569 Stuttgart, Germany Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM-87545, U.S.A.
Jiangyong Wang
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Eric J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Get access

Abstract

Initial interaction of a magnetron sputter deposited Al(100 nm, {111} fibre textured)/Si(150 nm, amorphous) bilayer, induced by isothermally annealing at 523 K for 60 min in a vacuum of 2.0×10−4 Pa, was studied by X-ray diffraction, Auger electron microscopy and focused-ion beam imaging techniques. Upon annealing, the crystalline Si had grown into the grain boundaries of the Al layer with a {111} texture, a crystallite size of approximate 12 nm and a tensile stress of +138 MPa. Simultaneously, the Al grains had grown into the Si layer from the original interface of the a-Si and Al sublayers with the lateral grain growth. The stress parallel to the surface of the Al layer had changed from +27 MPa to +232 MPa after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herd, S.R., Chaudhari, P. and Brodsky, M.H., J. Non-Cryst. Solids 7, 309 (1972).Google Scholar
2. Ottaviani, G., Sigurd, D., Marrello, V., Mayer, J.W. and McCaldin, J.O., J. Appl. Phys. 45, 1730 (1974).Google Scholar
3. Nakamura, K., Olowolafe, J.O., Lau, S.S., Nicolet, M-A., Mayer, J.W. and Shima, R., J. Appl. Phys. 47, 1278 (1976).Google Scholar
4. Benedictus, R., Böttger, A. and Mittemeijer, E.J., Phys. Rev. B 54, 9109 (1996).Google Scholar
5. Murray, J.L. and McAlister, A.J., Bull. Alloy Phase Diagrams 5, 74 (1984).Google Scholar
6. Oki, F., Ogawa, Y. and Fujiki, Y., Jap. J. Appl. Phys. 8, 1056 (1969).Google Scholar
7. Bosnell, J.R. and Voisey, U.C., Thin Solid Films 6, 161 (1970).Google Scholar
8. Herd, S.R., Chaudhari, P. and Brodsky, M.H., J. Non-Cryst. Solids 7, 309 (1972).Google Scholar
9. Toyohiko, J.K. and Robert, S., Phil. Mag. B 66, 749 (1992); Mater. Sci. Eng. A 179/180, 426 (1994).Google Scholar
10. Nast, O., Puzzer, T., Koschier, L.M., Sproul, A.B. and Wenham, S.R., Appl. Phys. Lett. 73, 3214 (1998); O. Nast and S.R. Wenham, J. Appl. Phys. 88, 124 (2000); O. Nast and A.J. Hartmann, J. Appl. Phys. 88, 716 (2000).Google Scholar
11. Zhao, Y.H., Wang, J.Y. and Mittemeijer, E.J., Thin Solid Films 433, 82 (2003); Y.H. Zhao, J.Y. Wang and E.J. Mittemeijer, Appl. Phys. A DOI: 10.1007/s00339-003-2247-9 (2003).Google Scholar
12. Vermeulen, A.C., Delhez, R., Keijser, Th.H. de and Mittemeijer, E.J., J. Appl. Phys. 77, 5026 (1995).Google Scholar
13. Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Ltd, Oxford, 1992), p. 15–5.Google Scholar
14. Delhez, R., Keijer, Th.H. de and Mittemeijer, E.J., Fres. Z. Anal. Chem. 312, 1 (1982).Google Scholar
15. Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys, 2nded. (Chapman and Hall, London, 1992).Google Scholar
16. Kaur, I. and Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion, 2nd ed. (Ziegler, Stuttgart, 1989).Google Scholar