Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:53:05.803Z Has data issue: false hasContentIssue false

Influence of the Distribution of Tail States in a-Si:H on the Field Dependence of Carrier Drift Mobilities

Published online by Cambridge University Press:  21 March 2011

Monica Brinza
Affiliation:
Laboratorium voor Halfgeleiderfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
Evguenia V. Emelianova
Affiliation:
Laboratorium voor Halfgeleiderfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
André Stesmans
Affiliation:
Laboratorium voor Halfgeleiderfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
Guy J. Adriaenssens
Affiliation:
Laboratorium voor Halfgeleiderfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
Get access

Abstract

Exponential distributions of tail states have been able, within the framework of a multiple-trapping transport model, to account rather well for the time-of-flight photoconductivity transients that are measured with ‘standard’ a-Si:H, i.e. material prepared by plasma-enhanced chemical vapor deposition at ∼250°C. A field-dependent carrier mobility in the dispersive transport regime is part of the observations. However, samples prepared in an expanding thermal plasma, although still exhibiting the dispersive transients, fail to show this field dependence. The presence of a Gaussian component in the density of valence-band tail states can account for such behavior for the hole transients. Nanoscale ordered inclusions in the amorphous matrix are thought to be responsible for the Gaussian density of states contribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Hydrogenated amorphous silicon (Cambridge University Press, 1991).Google Scholar
2. Tiedje, T., Cebulka, J. M., Morel, D. L. and Abeles, B., Phys. Rev. Lett. 46, 1425 (1981).Google Scholar
3. Arkhipov, V. I., Iovu, M. S., Rudenko, A. I. and Shutov, S. D., phys. stat. sol (a) 54, 67 (1979).Google Scholar
4. Tiedje, T. and Rose, A., Solid State Commun. 37, 49 (1981).Google Scholar
5. Schmidlin, F. W., Phys. Rev. B 16, 2362 (1977).Google Scholar
6. Noolandi, J., Phys. Rev. B 16, 4466 (1977).Google Scholar
7. Rudenko, A. I. and Arkhipov, V. I., Phil. Mag. B 45, 177 (1982).Google Scholar
8. Arkhipov, V. I. and Rudenko, A. I., Phil. Mag. B 45, 189 (1982).Google Scholar
9. Rudenko, A. I. and Arkhipov, V. I., Phil. Mag. B 45, 209 (1982).Google Scholar
10. Tiedje, T., in The Physics of Hydrogenated Amorphous Silicon II, Eds. Joannopoulos, J. D. and Lukovsky, G. (Springer-Verlag, Berlin, 1984), p. 261.Google Scholar
11. Adriaenssens, G. J., Seynhaeve, G. and Michiel, H., SPIE Proceedings 763, 74 (1987).Google Scholar
12. Kessels, W. M. M., Severens, R. J., Smets, A. H. M., Korevaar, B. A., Adriaenssens, G. J., Schram, D. C. and Sanden, M. C. M. van de, J. Appl. Phys. 89, 2404 (2001).Google Scholar
13. Brinza, M., Adriaenssens, G. J., Iakoubovskii, K., Stesmans, A., Kessels, W. M. M., Smets, A. H. M., Korevaar, B. A., Sanden, M. C. M. van de, J. Non-Cryst. Solids 299, 420 (2002).Google Scholar
14. Brinza, M., Adriaenssens, G. J. and Cabarrocas, P. Roca i, Thin Solid Films 427, 123 (2003).Google Scholar
15. Kessels, W. M. M., Sanden, M. C. M. van de and Schram, D. C., Appl. Phys. Lett. 72, 2397 (1998).Google Scholar
16. Yue, G., Han, D., Williamson, D. L., Yang, J., Lord, K. and Guha, S., Appl. Phys. Lett. 77, 3185 (2000).Google Scholar
17. Han, D., Yue, G., Wang, K., Baugh, J., Wu, Y., Xu, Y. and Wang, Q., Appl. Phys. Lett. 80, 40 (2002).Google Scholar
18. Smets, A. H. M., Ph.D. thesis (Eindhoven University of Technology, 2002).Google Scholar
19.A. Fontcuberta i Morral, Hofmeister, H. and Cabarrocas, P. Roca i, J. Non-Cryst. Solids 299, 284 (2002).Google Scholar
20. Butté, R., Vignoli, S., Meaudre, M., Meaudre, R., Marty, O., Saviot, L. and Cabarrocas, P. Roca I, J. Non-Cryst. Solids 266, 263 (2000).Google Scholar
21. Hourd, A. C. and Spear, W. E., Phil. Mag. B 51, L13 (1985).Google Scholar