Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:56:56.886Z Has data issue: false hasContentIssue false

Impurity Solubility and Redistribution Due to Recrystallization of Preamorphized Silicon

Published online by Cambridge University Press:  01 February 2011

Ray Duffy
Affiliation:
[email protected], Philips Research Leuven, CMOS Module Integration, Kapeldreef 75, Leuven, N/A, 3001, Belgium
Vincent Venezia
Affiliation:
[email protected], Axcelis Technologies, 108 Cherry Hill Drive, Beverly, MA, 01915, United States
Marco Hopstaken
Affiliation:
[email protected], Philips Semiconductors Crolles, 850 Rue Jean Monnet, Crolles, N/A, 38920, France
Geert Maas
Affiliation:
[email protected], Philips Research Laboratories, Prof. Holstlaan 4, Eindhoven, N/A, 5656 AA, Netherlands
Thuy Dao
Affiliation:
[email protected], Philips Research Laboratories, Prof. Holstlaan 4, Eindhoven, N/A, 5656 AA, Netherlands
Yde Tamminga
Affiliation:
[email protected], Philips Research Laboratories, Prof. Holstlaan 4, Eindhoven, N/A, 5656 AA, Netherlands
Fred Roozeboom
Affiliation:
[email protected], Philips Research Laboratories, Prof. Holstlaan 4, Eindhoven, N/A, 5656 AA, Netherlands
Karel van der Tak
Affiliation:
[email protected], Philips Research Laboratories, Prof. Holstlaan 4, Eindhoven, N/A, 5656 AA, Netherlands
Get access

Abstract

The use of silicon substrate preamorphization in ultrashallow junction formation has increased in recent years. The reduction of channeling during impurity implantation, coupled with higher-than-equilibrium metastable solubility levels, produces scaled junctions with low resistances. However, a number of physical phenomena arise that must be considered for proper impurity profile and device optimization.

With respect to impurity solubility advanced annealing techniques such as solid-phase-epitaxial-regrowth (SPER), flash, and laser annealing, can place impurity atoms on substitutional sites in the silicon lattice to extremely high concentrations when combined with preamorphization. In this context there is a relationship between the equilibrium distribution coefficient and metastable solubility. The long-established equilibrium distribution coefficient of an impurity, extracted in the liquid to solid phase transformation, can make a prediction of metastable solubility after transformation of amorphous silicon into crystalline silicon during SPER, flash, and laser annealing.

With respect to impurity redistribution the significant effects can be split into 3 categories, namely before, during, and after recrystallization. Before recrystallization impurity diffusion in the amorphous region may occur. Boron is particularly susceptible to this effect, which is very significant for the formation of p-type junctions. During recrystallization many impurities move ahead of the amorphous-crystalline (a/c) interface and relocate closer to the surface. In general redistribution is more likely at high impurity concentrations. For low-temperature SPER there is a direct correlation between the magnitude of this redistribution effect and the impurity metastable solubility. After recrystallization, with SPER, flash, and laser annealing commonly leaving residual damage in the silicon substrate, interstitial-diffusers are especially vulnerable to preferential diffusion toward the surface, where impurity atoms may be trapped, ultimately leading to a more shallow profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Trumbore, F. A., Bell Syst. Tech. J. 39, 205 (1960).Google Scholar
2 Williams, J. S., Nucl. Instrum. Meth. 209/210, 219 (1983).Google Scholar
3 Narayan, J. et al., Appl. Phys. Lett. 41, 239 (1982).Google Scholar
4 White, C. W. et al., J. Appl. Phys. 51, 738 (1980).Google Scholar
5 Williams, J. S. et al., Nucl. Instrum. Meth. 182/183, 389 (1981).Google Scholar
6 Tamminga, Y. et al., Appl. Phys. Lett. 32, 13 (1978).Google Scholar
7 Williams, J. S. et al., Appl. Phys. Lett. 37, 829 (1980).Google Scholar
8 Duffy, R. et al., J. Vac. Sci. Technol. B 23, 2021 (2005).Google Scholar
9 Scott, W. et al., J. Electron. Mater. 8, 581 (1979).Google Scholar
10 Pantelides, S., Solid State Communications 84, 221 (1992).Google Scholar
11 Roorda, S. et al., Phys. Rev. B 44, 3702 (1991).Google Scholar
12 Roorda, S. et al., Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
13 Jacques, J. M. et al., Appl. Phys. Lett. 82, 3469 (2003).Google Scholar
14 Duffy, R., et al., Appl. Phys. Lett. 84, 4283 (2004).Google Scholar
15 Elliman, R. G. et al., IEEE Conf. on Ion Impl. Tech. 1998, p.1055.Google Scholar
16 Nash, G. R., et al., Appl. Phys. Lett. 75, 3671 (1999).Google Scholar
17 Streit, D. C. et al., J. Vac. Sci. Technol. B 5, 752 (1987).Google Scholar
18 Coffa, S. et al., Phys. Rev. B 45, 8355 (1992).Google Scholar
19 Street, R. A., et al., Philos. Mag. B 56, 305 (1987).Google Scholar
20 Kuznetsov, A. Y., et al., Appl. Phys. Lett. 66, 2229 (1995).Google Scholar
21 Duffy, R. et al., Mat. Res. Soc. Symp. Proc. Vol. 810, C10.2.1 (2004)Google Scholar
22 Larsen, A. Nylandsted et al., J. Appl. Phys. 73, 691 (1993).Google Scholar
23 Agarwal, A., et al., Appl. Phys. Lett. 74, 2331 (1999).Google Scholar
24 Zagwijn, P. M. et al., J. Appl. Phys. 76, 5719 (1994).Google Scholar
25 Eaglesham, D. J., et al., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
26 Venezia, V. C. et al., Mat. Sci. Eng. B 124–125, 245 (2005).Google Scholar
27 Pinto, M. R. et al., Proc. IEDM, 923 (1992).Google Scholar
28 Gossmann, H.-J. et al., J. Appl. Phys. 74. 3150 (1993)Google Scholar
29 Olson, G. L. et al., Material Science Reports 3, 1 (1988).Google Scholar
30 Elliman, R. G. et al., J. Appl. Phys. 73, 3313 (1993).Google Scholar
31 Elliman, R. G. et al., Appl. Phys. Lett. 51, 314 (1987).Google Scholar
32 Poate, J. M. et al., Phys. Rev. Lett. 60, 1322 (1988).Google Scholar
33 Aziz, M. J., J. Appl. Phys. 53, 1158 (1982).Google Scholar
34 Aziz, M. J., Appl. Phys. Lett. 43, 552 (1983).Google Scholar
35 Aziz, M. J., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
36 Wang, H. C. H. et al., IEEE Electron Device Lett. 22, 65 (2001)Google Scholar
37 Duffy, R. et al., Appl. Phys. Lett. 82, 3647 (2003).Google Scholar
38 Duffy, R. et al., Appl. Phys. Lett. 86, 081917 (2005).Google Scholar
39 Ruffell, S. et al., J. Appl. Phys. 97, 123518 (2005).Google Scholar
40 Hopstaken, M. J. P. et al., Appl. Surf. Sci. 231–232, 688 (2004).Google Scholar
41 Johannessen, J. S. et al., J. Appl. Phys. 49, 4453 (1978).Google Scholar
42 Schwarz, S. A. et al., J. Electrochem. Soc. 128, 1101 (1981).Google Scholar
43 Griffin, P. B. et al., Appl. Phys. Lett. 67, 482 (1995).Google Scholar