Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:25:48.114Z Has data issue: false hasContentIssue false

Impact of growth parameters on the formation of carbon nanostructures through thermal deposition of silicon carbide

Published online by Cambridge University Press:  10 June 2014

Munson Anderson
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
Michael Pochet
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
Benji Maruyama
Affiliation:
Air Force Research Laboratory, AFRL/RX, Wright-Patterson Air Force Base, OH 45433
Pavel Nikolaev
Affiliation:
Air Force Research Laboratory, AFRL/RX, Wright-Patterson Air Force Base, OH 45433
Elizabeth Moore
Affiliation:
Air Force Research Laboratory, AFRL/RX, Wright-Patterson Air Force Base, OH 45433
John Boeckl
Affiliation:
Air Force Research Laboratory, AFRL/RX, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

Carbon nanotube (CNT) and graphene films form on silicon carbon (SiC) using a metal-catalyst-free thermal decomposition approach. In this work, the growth conditions used in the decomposition process are varied to investigate their impact on the type and quality of carbon allotrope formed on the SiC substrate. The nanostructure growth is performed using two approaches, both of which involve intense heating (1250-1700oC) under moderate vacuum conditions (10-2 – 10-5 Torr) without the aid of carbon rich feed gases or metal catalysts commonly used in Chemical Vapor Deposition (CVD) growth approaches. The first growth method uses a graphite resistance furnace capable of annealing wafer-sized samples. The second approach uses a high-intensity laser to heat a micro-meter scale spot size. The high-intensity laser heats the illuminated area of the SiC substrate while under vacuum conditions, resulting in a small-scale growth process similar to the conventional resistance furnace technique. Unique to this micro-scale approach is that in situ Raman spectroscopy is performed yielding instantaneous characterization of the resultant carbon nanostructure as it is formed. The laser-induced growth mechanism enables the impact of varied background vacuum pressures and temperatures to be evaluated in situ. This work reports the findings for various parameter sets implemented during growth, and provides insight into the physical mechanism influencing the growth process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K. and Novoselov, K. S., Nat. Mater. 6(3), 183191 (2007).CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G., and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer (2001).CrossRefGoogle Scholar
Dresselhaus, M. S., Jorio, A., and Saito, R., Annu. Rev. Condens. Matter Phys. 1(1), 89108 (2010).CrossRefGoogle Scholar
Song, Y. and Smith, F. W., Appl. Phys. Lett. 81(16), 3061 (2002).CrossRefGoogle Scholar
Kusunoki, M., Suzuki, T., Kaneko, K., and Ito, M., Philos. Mag. Lett. 79(4), 153161 (1999).CrossRefGoogle Scholar
Mitchel, W. C., Boeckl, J., Tomlin, D., Lu, W., Rigueur, J., and Reynolds, J., Quantum Sensing and Nanophotonic Devices II 5732, 7783 (2005).CrossRefGoogle Scholar
Pochet, M., Campbell, J., Coutu, R., Fairchild, S., Boeckl, J., Materials Research Society Fall Proceedings W3.42 (2012).Google Scholar
Rao, R., Pierce, N., Liptak, D., Hooper, D., Sargent, G., Semiatin, S. L., Curtarolo, S., Harutyunyan, A. R., and Maruyama, B., ACS Nano 7(2), 11001107 (2013).CrossRefGoogle Scholar
Maruyama, T. and Naritsuka, S., Carbon Nanotubes - Synthesis, Characterization, Applications, Intech Open, 29-46 (2011).Google Scholar
Torres-Torres, C., Peréa-López, N., Martínez-Gutiérrez, H., Trejo-Valdez, M., Ortíz-López, J., and Terrones, M., Nanotechnology 24(4), 45201 (2013).CrossRefGoogle Scholar
Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., and Huczko, A., Solide State Phenom. 99(265), 25 (2004).Google Scholar
Antunes, E. F., Lobo, a. O., Corat, E. J., and Trava-Airoldi, V. J., Carbon N. Y. 45(5), 913921 (2007).CrossRefGoogle Scholar