Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:45:42.853Z Has data issue: false hasContentIssue false

High-Performance Thermoplastics for Rigid-Flex Printed Circuit Boards

Published online by Cambridge University Press:  21 February 2011

Wendy W. Lin
Affiliation:
QUEST Integrated, Inc., 21414 - 68th Avenue South, Kent, WA 98032
Ender Savrun
Affiliation:
QUEST Integrated, Inc., 21414 - 68th Avenue South, Kent, WA 98032
Get access

Abstract

Adhesive failure of rigid-flex printed circuit boards (RF-PCBs) during use has degraded the performance of military avionics systems. Adhesive failure is often caused by differences in the coefficient of thermal expansion (CTE) between the materials used in RF-PCBs and by moisture absorption by the adhesives and polyimide (PI) films. High-performance thermoplastics were investigated to replace the epoxies, PIs, and adhesives currently used in RF-PCBs. Because thermoplastic materials are remeltable, adhesive bonding may be replaced by fusion bonding to join RF-PCBs. Fusion bonding would eliminate problems with material compatibility and differences in the CTE encountered with adhesive bonding. Industries that would benefit from this research are manufacturers of aerospace instrumentation, medical equipment, automotive systems, computers, telecommunications equipment, industrial instrumentation and controls, and consumer products, such as stereo systems and calculators.

An extensive survey of high-performance-engineering thermoplastic materials was performed, and samples of the more promising materials (both films and chopped fiber reinforced) were obtained for preliminary screening tests. The tests performed were chemical resistance, water absorption, tensile strength, flexibility, and solder resistance of bare dielectric. From these tests, a glass-filled liquid crystal polymer film made by Hoescht Celanese Performance Films best met the performance criteria compared with the thermoplastics tested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Frisch, D. C., “Thermoplastic Substrates for Advanced Packaging,” Proceedings of the Fifth Annual International Electronics Packaging Technical Conference, pp. 602615 (1985).Google Scholar
2. Gurley, S., Flexible Circuits: Design and Applications (Marcel Dekker, Inc., New York, 1984).Google Scholar
3. Rigling, W. S., Rigid-Flex Printed Wiring Design for Production Readiness (Marcel Dekker, Inc., New York, 1988).Google Scholar
4. Rubin, I. I., Handbook of Plastic Materials and Technology (John Wiley & Sons, Inc., New York, 1990).Google Scholar