Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T06:20:15.284Z Has data issue: false hasContentIssue false

High Resolution Transmission Electron Microscopy of Metallic Film/Laser-Irradiated Alumina Couples.

Published online by Cambridge University Press:  15 February 2011

A. J. Pedraza
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200
Siqi Cao
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2200
L. F. Allard
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6056
Get access

Abstract

A near-surface thin layer is melted when single crystal alumina (sapphire) is pulsed laserirradiated in an Ar-4%H2 atmosphere. γ-alumina grows epitaxially from the (0001) face of axalumina (sapphire) during the rapid solidification of this layer that occurs once the laser pulse is over. Cross sectional high resolution transmission electron microscopy (HRTEM) reveals that the interface between unmelted sapphire and γ-alumina is atomistically flat with steps of one to a few close-packed oxygen layers; however, pronounced lattice distortions exist in the resolidified γ-alumina. HRTEM also is used to study the metal-ceramic interface of a copper film deposited on a laser-irradiated alumina substrate. The observed changes of the interfacial structure relative to that of unexposed substrates are correlated with the strong enhancement of film-substrate bonding promoted by laser irradiation. HRTEM shows that a thin amorphous film is produced after irradiation of 99.6% polycrystalline alumina. Formation of a diffuse interface and atomic rearrangements that can take place in metastable phases contribute to enhance the bonding strength of copper to laser-irradiated alumina.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. MacDonald, J. E. and Eberhart, J. G., Trans. Met. Soc. AIME, 233, 512 (1965).Google Scholar
2. Weyl, W. A., in Adhesion and Adhesives-Fundamentals and Practice, edited by Rutzler, J. E. and Savage, R. L. (John Wiley & Sons, New York, 1953), p. 36.Google Scholar
3. Moore, D. C. and Thornton, H. R., J. Res. Natl. Bur. Std., 62, 127 (1959).Google Scholar
4. Baglin, J. E. E., Schrott, A. G., Thompson, R. D., Tu, K. N., and Segmuller, A., Nucl. Instr. and Method, B19/20, 782 (1987).Google Scholar
5. Pedraza, A. J., Kumar, R. A., and Lowndes, D. H., to be published in Appl. Phys. Lett.Google Scholar
6. Pedraza, A. J., DeSilva, M. J., Kumar, R. A., and Lowndes, D. H., to be published.Google Scholar
7. Pedraza, A. J., Zhang, J.-Y., and Esron, H., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J. J., and Norton, D. P. (Mat. Res. Sco. Proc. 285, Pittsburgh, PA, 1993) p. 209.Google Scholar
8. Pedraza, A. J. and Godbole, M. J., Metallurgical Transactions A, 23A, 1095 (1992).Google Scholar
9. Lowndes, D. H., DeSilva, M., Godbole, M. J., and Geohegan, D. B., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J. J., and Norton, D. P. (Mat. Res. Sco.Proc. 285, Pittsburgh, PA, 1993) p. 191.Google Scholar
10. Ruhle, M., “Misfit Dislocations at Metal/Ceramics Interfaces” presented at the Symposium Cb: Defect-Interface Interactions, MRS Fall Meeting, Boston, MA, Dec. 1993.Google Scholar
11. Park, J. W., Pedraza, A. J., and Allen, W. R., in this proceeding.Google Scholar
12. Pedraza, A. J., Park, J. W., Meyer, H. M. III, and Braski, D. N., J. Mater. Res. 9, 2251 (1994).Google Scholar
13. Cao, Siqi, Pedraza, A. J., Lowndes, D. H., and Allard, L. F., Appl. Phys. Lett., 65 (1994) in press.Google Scholar
14. MacTemps Software, Total Resolution, Berkeley, CA 94707.Google Scholar
15.International Tables for X-Ray Crystallography”, Vol. 1, edited by Henry, N. F. M. and Lonsdale, K. (Birmingham, The Kynoch Press, 1969).Google Scholar
16. Moya, F., Moya, E. G., Juve, D., Treheux, D., Grattepain, C, and Aucouturier, M., Scripta Metallurgica, 28, 343 (1993).Google Scholar