Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:32:26.225Z Has data issue: false hasContentIssue false

High Mobility SiGe/Si n-MODFET Structures and Devices on Sapphire Substrates

Published online by Cambridge University Press:  17 March 2011

Carl Mueller
Affiliation:
Analex Corporation, Cleveland, OH, USA
Samuel Alterovitz
Affiliation:
NASA Glenn Research Center; Cleveland, OH, USA
Edward Croke
Affiliation:
HRL Laboratories LLC, Malibu, CA, USA
George Ponchak
Affiliation:
NASA Glenn Research Center; Cleveland, OH, USA
Get access

Abstract

SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. Mobilities as high as 1380 cm2/Vs were measured at room temperature. Excellent carrier confinement was shown by Shubnikov-de Haas measurements. Atomic force microscopy indicated smooth surfaces, with rms roughness less than 4 nm, similar to the quality of SiGe/Si n-MODFET structures made on Si substrates. Transistors with 2 μm gate lengths and 200 μm gate widths were fabricated and tested. An IDS of 9 mA was obtained by operating the transistor in an enhancement mode (positive VGS) and the maximum transconductance (gm) was 37 mS/mm at a VDS of 2.5 V. The transducer gain (Gt) measured with a loadpull system was 6.4 dB at 1 GHz for a VDS of 2.5 V and VGS=-0.4 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, R.A., Chang, C.E., Asbeck, P.M., Wood, M.E., Garcia, G.A., and Lagnado, I., IEEE Microwave and Guided Wave Lett. 6, 323325 (1996).Google Scholar
2. Burghartz, J.N., Edelstein, D.C., Jenkins, K.A., and Kwark, Y.H., IEEE Trans. Microwave Theory and Tech. 45, 19611968 (1997).Google Scholar
3. Floyd, B.A., Shi, L., Taur, Y., Lagnado, I., and K.K.O., IEEE Trans. Microwave Theory and Tech. 50, 21932196 (2002).Google Scholar
4. Lyons, G., Wu, G., Mellissinos, T. and Cable, J., IEEE Radiation Effects Data Workshop (Norfolk, VA), 4145 (1999).Google Scholar
5. McAdam, P. and Goldberg, B-G., Appl. Microwave & Wireless, p. 2634 (Feb. 2002).Google Scholar
6. Koester, S. J., Hammond, R., Chu, J. O., Mooney, P. M., Ott, J. A., Perraud, L., Jenkins, K. A., Webster, C. S., Lagnado, I., and Houssaye, P. R. de la, IEEE Electron Dev. Lett. 22, 9294 (2001).Google Scholar
7. Schäffler, F., Semicond. Sci. Technol. 12, 15151549 (1997).Google Scholar
8. Colinge, J-P Silicon-on-Insulator Technology: Materials to VLSI (Kluwer, Boston, 1991), p. 8.Google Scholar
9. Mueller, C.H., Croke, E.T., and Alterovitz, S.A., Elect. Lett. 39, 13531354 (2003).Google Scholar
10. Alterovitz, S.A., Mueller, C.H., Croke, E.T., and Ponchak, G.E., Mat. Res. Soc. Symp. Proc. 783, Paper B6.5 (2004).Google Scholar
11. Hackbarth, T., Herzog, H. -J., Hieber, K. -H., König, U., Bolani, M., Chrastina, D. and Kanel, H. von, Appl. Phys. Lett. 83, 54645466 (2003).Google Scholar
12. Monroe, D., Xie, Y. H., Fitzgerald, E. A., Silverman, P. J. and Watson, G. P., J. Vac. Sci, Technol. B 11, 17311737 (1993).Google Scholar
13. Feenstra, R. M., Lutz, M. A., Stern, F., Ismail, K., Mooney, P. M., LeGoues, F. K., Stanis, C., Chu, J. O. and Meyerson, B. S., J. Vac. Sci. Technol. 13, 16081612 (1995).Google Scholar
14. Schroder, D. K., Semiconductor Material and Device Characterization, 2-nd. Ed., (John Wiley & Sons, New York, 1998), Ch. 3.Google Scholar
15. Chou, S. Y. and Antoniades, D. A., IEEE Electron Dev. 34, 448450 (1987).Google Scholar
16. Enciso-Aguilar, M., Aniel, F., Crozat, P., Adde, R., Herzog, H. -J., Hackbarth, T., König, U. and Kanel, H. von, Elect. Lett. 39, 149151 (2003).Google Scholar