Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:43:19.429Z Has data issue: false hasContentIssue false

High Current Density in m c-Si PECVD Diodes for Low Temperature Applications

Published online by Cambridge University Press:  21 March 2011

Patricia A. Beck
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, CA 94304, U.S.A.
Janice H. Nickel
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, CA 94304, U.S.A.
Peter G. Hartwell
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, CA 94304, U.S.A.
Get access

Abstract

The development of microcrystalline diodes grown at low temperature by PECVD techniques is reported. Current densities near 200 A/cm2 at + 2 V, and rectification ratios on the order of 105 at +/- 1V and 107at +/- 2V were obtained. The reverse currents were in the nano-ampere range. Correlations between deposition conditions and film quality are presented. The effects of mesa formation and subsequent treatments designed to reduce process damage are discussed: annealing conditions yield an increase in forward current, and a decrease in reverse current. Fabrication conditions are compatible with applications requiring low temperature processes (e. g., multi-layer structures, molecular layers, or plastic substrates and coatings).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sakimura, N., Sugibayashi, T., Honda, T., Miura, S., Numata, H., Hada, H. and Tahara, S., 2003 IEEE Int'l. Solid-State Circuits Conf., Digest of Technical Papers, 1, 278 (2003).Google Scholar
[2] Kuekes, P. J., Williams, R. S. and Heath, J. R., Molecular Wire Crossbar Memory, U. S. Patent No. 6,128,214 (3 October, 2000).Google Scholar
[3] Fred Perner of Hewlett-Packard Labs (private communication on MRAM specifications).Google Scholar
[4] Brammer, T. and Stiebig, H., J. Appl. Phys., 94 (2), 1035 (2003).Google Scholar
[5] Wronski, C. R., Collins, R. W., Pearce, J. M., Deng, J., Vlahos, V., Ferreira, G. M. and Chen, C., NCPV and Solar Program Review Mtg. 2003, NREL/CD-520-33586, ppf. 789.Google Scholar
[6] Frank Jeffrey of Iowa Thin Films (private communication on his c-Si film deposition).Google Scholar
[7] Collins, R. W. and Ferlauto, A. S., Current Opinion in Solid State Science 6 425 (2002).Google Scholar
[8] Smit, C., Swaaij, R. A. C. M. M. van, Donker, H., Petit, A. M. H. N., Kessels, W. M. M., and Sanden, M. C. M. van de, J Appl. Phys. 94 (5), 3582 (2003).Google Scholar
[9] Wang, Q., Ward, S.. Duda, A., Hu, J., Stradins, P, Crandall, R. and Branz, H., to be published.Google Scholar
[10] Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge 1991) p. 363.Google Scholar
[11] Nickel, J., Beck, P., Hartwell, P., Overbay, M. and Long, G., to be published.Google Scholar
[12] Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A., Maley, N., Phys. Rev. B, 45 13367 (1992).Google Scholar
[13] Phillips, Alvin B., Transistor Engineering and Introduction to Integrated Semiconductor Circuits (McGraw Hill, New York, 1962) pp. 137144.Google Scholar
[14] Op. cit. Street, pp. 321331.Google Scholar
[15] Op. cit. Street, p. 236.Google Scholar
[16] Kroon, M. A. and Swaaij, R. A. C. M. M. van, J. Appl. Phys., 90 (2) 994 (2001).Google Scholar