Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:41:41.118Z Has data issue: false hasContentIssue false

HF/Ethanol Preoxidation Silicon Cleaning: Analysis of the Silicon Surface and of the Ultra-Thin Oxide Layer

Published online by Cambridge University Press:  25 February 2011

B. Garrido
Affiliation:
LCMM. Facultat de Fisica, Universitat de Barcelona. Diagonal 645-647. 08028 Barcelona, (Spain)
F. Gessinn
Affiliation:
LAAS-CNRS. 7, Avenue du Colonel Roche, 31077 Tolouse Cx, (France)
J.L. Prom
Affiliation:
LAAS-CNRS. 7, Avenue du Colonel Roche, 31077 Tolouse Cx, (France)
J.R. Morante
Affiliation:
LCMM. Facultat de Fisica, Universitat de Barcelona. Diagonal 645-647. 08028 Barcelona, (Spain)
J. Samitier
Affiliation:
LCMM. Facultat de Fisica, Universitat de Barcelona. Diagonal 645-647. 08028 Barcelona, (Spain)
G. Sarrabayrouse
Affiliation:
LAAS-CNRS. 7, Avenue du Colonel Roche, 31077 Tolouse Cx, (France)
Get access

Abstract

The HF/Ethanol cleaning treatment is analyzed in comparison to the HF/H 20 one. The surface analysis is made on <100> silicon wafers with sacrificial oxide layer and silicon wafers with different crystallographic orientation without sacrificial layer. The results deduced from Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and ellipsometry, show that siliconfluorine bonds are related with reactive sites. The structure of the thermally thin oxide layer grown after both cleanings has been analyzed and the electrical measurements show better performance for the HF/Ethanol cleaning.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chabal, Y.J., Higashi, G.S., Raghavachari, K., Burrows, U.A., J. Vac., Sci. Technol. A7, 2104 (1989).Google Scholar
[2] Higashi, G.S., Chabal, Y.J., Trucks, G.W., Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
[3] Hirose, M., Yasaka, T., Takamura, M., Miyazaki, S., Sol. Sate Technol., December 1991, pp 4348.Google Scholar
[4] Sakurai, T., Hagstrum, H., Phys. Rev. B, 14, 1593 (1976).CrossRefGoogle Scholar
[5] Ermolieff, A., Martin, F., Amouroux, A., Marthon, S., Westendorp, J.F.M., Semicond. Sci. Technol., 6, 98 (1991).Google Scholar
[6] Sumada, T., Yasaka, T., Takamura, M., Sugiyama, T., Miyazaki, S., Hirose, M., Jap. J. of Appl. Phys., 29, L2408 (1990).Google Scholar
[7] Grunthaner, P.J., Grunthaner, F.J., Fathaner, R.W., Lin, T.L., Hecht, M.H., Bell, L.D. and Kaiser, W.K., Thin Solid Films, 183, 197 (1989).CrossRefGoogle Scholar
[8] Prom, J.L., Castagne, J., Sarrabayrouse, G. and Mufloz-Yague, A., IEE Proc., Part I, 135, 20 (1988).Google Scholar
[9] Conley, A.F., Roberts, M.W., Proc. R. Soc., A363, 403 (1978).Google Scholar
[10] Garrido, B., Samitier, J., Morante, J.R., Fonseca, L., Campabadal, F., Appl. Surf. Science, 56–58, 861 (1992).CrossRefGoogle Scholar
[11] Kassmi, K., Prom, J.L. and Sarrabayrouse, G., Sol. St. Electron., 34: 509 (1991).Google Scholar
[12] Prom, J.L., Morfouli, P., Kassmi, K., Pananatzakis, G. and Sarrabayrouse, G., IEE Proc., Part G, 138:321 (1991).Google Scholar