Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:45:47.819Z Has data issue: false hasContentIssue false

Heterometallic Aggregates as Intermediates on the Molecular Routes to Multicomponent Oxides

Published online by Cambridge University Press:  25 February 2011

Liliane G. Hubert-Pfalzgraf*
Affiliation:
Laboratoire de Chimie Moléculaire, Associé au CNRS, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
Get access

Abstract

Metal alkoxides are often associated with more accessible precursors such as carboxylates, nitrates, B-diketonates, in chemical routes to multicomponent oxides. The molecular constitution of such solutions has been examined for systems based on niobium or zirconium. The heterometallic aggregates MNb2(μOAc)2(μ-0R)4(OR)6 (M = Cd, Mg), PbZr3, (μ4-0)(μ-0Ac)2(μ-0R)5(0R)5 and Gd2Zr64-O)2(μOAc)6(μOR)10(0R)10 R = iPr have been characterized by X-ray diffraction. Preliminary results on the hydrolysis experiments of these aggregates are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubert-Pfalzgraf, L. G., New J. Chem. 11, 663 (1987).Google Scholar
2. Dislich, H., Angew. Chem. Int. Ed. Engl. 10, 363 (1971).Google Scholar
3. Vest, R. W., Fitzsimmons, T. J., Xuu, J., Shaikh, A., Liedl, G. L., Schindler, A. I. and Honig, J. M., J. Solid State Chem. 73, 283 (1988);Google Scholar
Agostinelli, J. A., Paz-Pujolt, C.R. and Mehrotra, A. K., Physica C, C156, 208210 (1988);CrossRefGoogle Scholar
Shaikaud, A.S. and Vest, G.M., J. Am. Ceram. Soc. 69, 682686 (1986).Google Scholar
4. Bradley, D. C., Chem. Rev. 89, 1317 (1989).Google Scholar
5. Caulton, K. G. and Hubert-Pfalzgraf, L. G., Chem. Rev. 90, 969 (1990).CrossRefGoogle Scholar
6. Pederson, L. R., Maupin, G. D., Weber, W. J., McReady, O. J. and Stephens, R. W., Mater. Lett. 10, 437 (1991).CrossRefGoogle Scholar
7. Sirio, C., Poncelet, O., Hubert-Pfalzgraf, L. G., Daran, J. C. and Vaissermann, J., Polyhedron 11, 177 (1992).Google Scholar
8. Godbole, P. D., Deshponde, S. B., Potdar, H. S. and Date, S. K., Mater. Lett. 12, 97101 (1991).Google Scholar
9. Bradley, D. C., Chakravarti, B. N. and Wardlaw, W., J. Chem. Soc. 1956, 2381.Google Scholar
10. Vaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K. and Caulton, K. G., Inorg. Chem. 29, 31263131 (1991).Google Scholar
11. Chaput, F., Boilot, J. P., Lejeune, M., Papiernik, R. and Hubert-Pfalzgraf, L. G., J. Am. Ceram. Soc. 72, 1355 (1989);Google Scholar
Renoult, O., Boilot, J. P., Chaput, F., Papiernik, R., Hubert-Pfalzgraf, L. G. and Lejeune, M., Ceramics Today - Tomorrow's Ceramics (Elsevier, London, 1991), p. 1991.Google Scholar
12. Boulmaaz, S., Papiernik, R., Hubert-Pfalzgraf, L. G., Daran, J. C. and Vaissermann, J., Chem. Mat. 3, 779 (1991).Google Scholar
13. Dechter, J. J., NMR of metal nucleides. Part I: Main group elements, Progress in Inorganic Chemistry, edited by Lippard, J. S.; vol 29, 285 (1982);Google Scholar
Harris, R. K., Kennedy, J. J., McFarlane, W., NMR and the Periodic Table, edited by Harris, R. K. and Mann, B. E. (Academic Press, London 1978), p 366.Google Scholar
14. Mosset, A., Gautier-Luneau, I., Galy, J., Strehlov, P. and Schmidt, H., J. Non Cryst. Solids 100 339 (1988).CrossRefGoogle Scholar
15. Papiernik, R., Hubert-Pfalzgraf, L. G. and Daran, J. C., J. Chem. Soc., Chem. Commun. 1991, 695;Google Scholar
Hubert-Pfalzgraf, L. G., Papiernik, R., Massiani, M. C. and Septe, B., MRS Better Ceramics through Chemistry IV., 180, 393 (1990)Google Scholar
15. Cava, R. J., Batlogg, B., Krajewski, J. J., Rupp, L. W., Schneemeyer, L. F., Siegrist, T., VanDover, R. B., Marsh, P., Peck, W. F. Jr, Gallagher, P. K., Glarum, S. H., Marshall, J. H., Farrow, R. C., Waszczak, J. V., Hull, R. and Trevor, P., Nature, 136, 211 (1988).Google Scholar
16. Wells, A. F., Structural Inorganic Chemistry, 5 ed., Oxford University Press.Google Scholar
17. Okazaki, K., Ceramic Bull. 67, 1946 (1988).Google Scholar
18. Yanovskaya, M. I., Turevskaya, E. P., Turova, N. Ya., Dambekalne, M. Ya., Kolganova, N. V., Ivanov, S. A., Segalla, A. G., Belov, V. V., Novoselova, A. V. and Veneutsev, Yu. N., Inorg. Mater., 21, 584 (1987);Google Scholar
Hirashina, H., Onishi, E. and Nakagawa, M., J. Non Cryst. Sol. 121, 404 (1990).CrossRefGoogle Scholar
19. Papiernik, R., Massiani, M. C. and Hubert-Pfalzgraf, L. G., Polyhedron 10, 1657 (1991);CrossRefGoogle Scholar
Goei, S. C., Chiang, M. Y. and Buhro, W. E., Inorg. Chem. 29 4640 (1990).Google Scholar
20. Hubert-Pfalzgraf, L. G., Papiernik, R. and Chaput, F., J. Non-cryst. Solids, in the pressGoogle Scholar
21. Yunlu, K., Gradeff, P. S., Edelstein, N., Kot, W., Shalimoff, G., Streib, W., Vaarststra, B. A. and Caulton, K.G., Inorg. Chem., 30, 2317 (1991).CrossRefGoogle Scholar
22. Ya Turova, N., Kozlova, N. I. and Novoselova, A. V., Russ. J. Inorg. Chem. 25. 1788 (1980).Google Scholar
23. Patii, K. C., Chanrashekhar, G. V., George, M. V. and Rao, C. N. R., Can. J. Chem. 46, 257 (1968)Google Scholar
24. Deacon, G. B. and Philipps, R. J., Coord. Chem. Rev., 90, 227 (1980).Google Scholar