Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:04:56.966Z Has data issue: false hasContentIssue false

Heteroepitaxial growth and characterization of Ge and SiXGe1−X films on patterned silicon structures

Published online by Cambridge University Press:  17 March 2011

Ganesh Vanamu
Affiliation:
Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM-87131, U.S.A
Abhaya K. Datye
Affiliation:
Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM-87131, U.S.A
Saleem H. Zaidi
Affiliation:
Gratings, Inc., 2700 B Broadbent Pkwy NE, Albuquerque, NM 87107
Get access

Abstract

We describe novel 2-D structures that facilitate strain relief and allow us to obtain Ge epilayers that are free of defects. These structures can potentially absorb thermal expansion and lattice expansion mismatch as well as enable liftoff of heteroepitaxial layers for subsequent wafer reuse. Conventional lithography techniques were combined with reactive ion and wet-chemical etching to fabricate 2-D patterns of silicon posts. The dimensions of the posts were varied keeping the pitch (center to center distance) constant. Heteroepitaxial growth of Ge/SixGe1−x on these micrometer-scale structures was investigated. While, keeping the growth parameters constant, the geometry of the structures was varied to determine the optimum configuration for the highest quality heteroepitaxial growth. The quality of the Si1−xGex buffer system was investigated using high-resolution x-ray diffraction. Transmission electron microscopy (TEM) was used to analyze the epilayer cross-sections. Surface morphology was analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy. Our results show that the quality of the heteroepitaxial layers improves as the width of the posts in the 2-D pattern was decreased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mooney, P. M., Jordansweet, J. L., Ismail, K., Chu, J. O., Feenstra, R. M., Legoues, F. K., Appl. Phys. Lett. 67, 2373 (1995).Google Scholar
2. Ismail, K., Arafa, M., Saenger, K. L., Chu, J. O., Meyerson, B. S., Appl. Phys. Lett. 66, 1077 (1995).Google Scholar
3. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A. and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
4. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., Fitzgerald, E. A., Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
5. Monney, P. M., Legoues, F. K., Jordansweet, J. L., Appl. Phys. Lett. 65, 2845 (1994).Google Scholar
6. Luryi, S., Kastalsky, A., Bean, J. C. IEEE Trans. Electron Devices 31, 1135 (1984).Google Scholar
7. Luryi, S., Kastalsky, A., and Bean, J. C., “New infrared detector on a silicon chip,” IEEE Trans. Electron Devices ED–31, 1135 (1984).Google Scholar
8. Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L. Di, Palange, E., and Evangelisti, F., Appl. Phys. Lett. 72, 3175 (1998).Google Scholar
9. Colace, L., Masini, G., and Assanto, G., Appl. Phys. Lett., 76, 1231 (2000).Google Scholar
10. Zirngibl, M. and IIegems, M., J. Appl. Phys. 69, 8392 (1991).Google Scholar
11. Ribas, P., Krishnamoorthy, V., and Park, R. M., Appl. Phys. Lett. 57 1040 (1990).Google Scholar
12. Win, P., Druelle, Y., and Cappy, A., Appl. Phys. Lett. 61, 922 (1992).Google Scholar
13. Ismail, K., Meyerson, B. S., and Wang, P. J., Appl. Phys. Lett. 58, 2117 (1991).Google Scholar
14. Mii, Y. J., Xie, Y. H., Fitzgerald, E. A., Monroe, D., Thiel, F. A., Weir, B. E., and Feldman, L. C., Appl. Phys. Lett. 59, 1611 (1991).Google Scholar
15. Fitzgerald, E. A., Annual Review of Materials Science 25, 417 (1995).Google Scholar
16. Fitzgerald, E. A., Materials Science Reports 7(3), 87 (1991).Google Scholar
17. LeGoues, F. K., Mooney, P. M., and Chu, J. O., Appl. Phys. Lett. 62, 140 (1993).Google Scholar
18. LeGoues, F. K., Mooney, P. M., and Tersoff, J. O., Phys. Rev. Lett. 71, 396 (1993).Google Scholar