Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:44:25.951Z Has data issue: false hasContentIssue false

H Evolution from Nano-Crystalline Silicon- Comparison of Simulation and Experiment

Published online by Cambridge University Press:  21 March 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011
B. C. Pan
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center and Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
Get access

Abstract

The temperature dependent H evolution from a-Si:H provides unique information on the H-bonding and microstructure. Traditional undiluted a-Si:H films show a high temperature H-evolution peak near 600°C. However device-quality compact nanocrystalline silicon films grown near the phase boundary of amorphous and microcrystalline growth show a new low temperature H- evolution peak near 400°C in addition to a second high temperature peak near 600°C. The origin of this peak cannot be attributed to microvoids or a substantial density of dihydride species typical of porous low-temperature films. We have simulated the H evolution using a molecular dynamics generated model of nanocrystalline silicon, where nano-crystallites reside in a background amorphous matrix. An excess density of H occurs at the crystallite surface. We find a low temperature evolution peak at 250-400°C, where the H-evolution starts from the surface of the nano-crystallite. In addition there is a higher temperature peak at 700-800°C providing good agreement with H-evolution measurements. The mobile H is found to exist in both the bond-centered type of species and H2 molecules – which has implications for H-diffusion models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyer, W. and Wagner, H., J. Appl. Phys. 53, 8745 (1982).Google Scholar
2. Beyer, W., Solar Energy and Materials 78, 235 (2003).Google Scholar
3. Mahan, A.H., Beyer, W., Williamson, D. L., Yang, J. and Guha, S., Phil. Mag. Letters 80, 647 (2000).Google Scholar
4. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 73, 1526 (1997). A. S. Ferlauto, R. J. Koval, C. R. Wronski and R. W. Collins, Appl. Phys. Lett. 80, 2666 (2002).Google Scholar
5. Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J. D., and Mahan, A.H., Appl. Phys. Lett. 74, 1860(1999).Google Scholar
6. Tsu, D. V., Chao, B.S., Ovshinsky, S. R., Guha, S. and Yang, J., Appl. Phys. Lett. 71, 1317 (1997). A. H. Mahan, J. Yang, S. Guha, and D. L. Williamson, Phys. Rev. B 61, 1677 (2000).Google Scholar
7. Mahan, A.H., Beyer, W., Williamson, D. L., Yang, J. and Guha, S., Phil. Mag. Letters 80, 647 (2000).Google Scholar
8. Sugiyama, S., Yang, J., Guha, S., Appl. Phys. Lett. 70, 378 (1997).Google Scholar
9. Vignoli, S., Morral, A.F.i, Butte, R., Meaudre, R., and Meaudre, M., J. Non. Cryst. Solids 299–302, 220 (2002).Google Scholar
10. Heise, H. and Nickel, N., J. Non. Cryst. Solids 299–302, 226 (2002); N. Nickel and K. Brendel, Appl. Phys. Lett. 82, 3029 (2003).Google Scholar
11. Hansen, U. and Vogl, P., Phys. Rev. B 57, 13295 (1998).Google Scholar
12. Biswas, R. and Pan, B. C., MRS Symp Proc. 752, A11.4.5 (2003)Google Scholar
13. Biswas, R., Pan, B.C. and Ye, Y. Y., Phys. Rev. Lett. 88, 205502 (2002).Google Scholar
14. Biswas, R., Li, Q., Pan, B.C., Yoon, Y., Phys. Rev. B. 57, 2253 (1998).Google Scholar