Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:15:13.765Z Has data issue: false hasContentIssue false

Growth of Silicon-Germanium Alloys by Atmospheric-Pressure Chemical Vapor Deposition at Low Temperatures

Published online by Cambridge University Press:  22 February 2011

P. D. Agnello
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
T. O. Sedgwick
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
M. S. Goorsky
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
J. Ott
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
T. S. Kuan
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
G. Scilla
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
V. P. Kesan
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Dichlorosilanc and germane were used to grow silicon-germanium alloys at temperatures as low as 550°C at atmospheric pressure. Germanium mole fractions as high as 44% were obtained and the layers exhibit smooth surface morphology. Silicon-gcrmanium/silicon multilayers with abrupt hctero-intcrfaccs have been achieved. Cross Section Transmission Electron Microscopy, (XTEM) and High Resolution X-Ray Diffraction, (HRXRD) characterization of the hetero-interface abruptness will be presented. Recent results on two-dimensional (2-D) hole mobility structures grown by this technique will also be reported. Selective growth of silicon-germanium on oxide patterned silicon wafers was also demonstrated. A significant feature of the selective deposition is the lack of faceting at the oxide sidcwall, which has been commonly observed in high temperature silicon growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S. and Stork, J. M. C., IEEE EDL, 9, 165 (1988).CrossRefGoogle Scholar
2. Meyerson, B. S., Appl. Phys. Lett., 48, 797 (1986).Google Scholar
3. Gibbons, J. F., Gronet, C. M. and Williams, E. K., Appl. Phys. Lett., 47, 721 (1985).CrossRefGoogle Scholar
4. Sedgwick, T. O., Berkenblit, M., and Kuan, T.S., Appl. Phys. Lett., 54, 2689 (1989).Google Scholar
5. Sedgwick, T. O., Agnello, P. D., Berkenblit, M., and Kuan, T. S., Semiconductor Silicon 1990, Eds. Huff, H. R., Barraclough, K. G., and Chikawa, J., 90–7, (Electrochemical Society, Penington, NJ, 1990), p. 539.Google Scholar
6. Garone, P. M., Sturm, J. C., Schwartz, P. V., Schwarz, S. A. and Wilkens, B. J., Appl. Phys. Lett., 56, 1275 (1990).Google Scholar
7. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
8. Copel, M., Reuter, M. C., Kaxiras, E. and Tromp, R. M., Phys. Rev. Let., 63, 632 (1989).Google Scholar
9. Drowley, C. I., Reid, G.A., and Hull, R., 52, 546 (1988).Google Scholar
10. Ishitani, A., Kitajima, H., Tanno, K. and Tsuya, H., Microclcc. Eng. 4, 3 (1986).Google Scholar
11. Sedgwick, T. O. and Agnello, P.D., submitted to J. Elcctrochem. Soc.Google Scholar
12. Segmuller, A., Thin Solid Films, 18, 287 (1973).CrossRefGoogle Scholar
13. RADS, Bede Scientific Ltd., Durham England.Google Scholar
14. Matthews, J. W. and Blakeslec, A. E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
15. Agnello, P. D., Sedgwick, T. O., Meyer, D. and Ferro, A.P., Proceedings of the First Topical Symposium on Silicon Based Heterostructures, (37th American Vacuum Society Symposium, 1990), p. 46.Google Scholar